DOI QR코드

DOI QR Code

Treatment of Domestic Wastewater by the Application of Electrochemical Membrane Bioreactor and Generation of Bioelectricity

  • Yadav, Saurabh (Department of Chemical Engineering, Motilal Nehru National Institute of Technology) ;
  • Kamsonlian, Suantak (Department of Chemical Engineering, Motilal Nehru National Institute of Technology) ;
  • Pal, Shubham (Department of Chemical Engineering, Motilal Nehru National Institute of Technology)
  • Received : 2022.08.19
  • Accepted : 2022.09.28
  • Published : 2022.10.10

Abstract

The need for obtaining treated wastewater that meets high quality standards for discharge or reuse necessitates the use of highly efficient wastewater treatment techniques. In the present study, experiments have been carried out to reduce the concentration level of biological oxygen demand (BOD), chemical oxygen demand (COD), and total dissolved solids (TDS) from the wastewater sample. Treatment of sample of a real municipal wastewater collected from a sewage treatment plant (STP) was carried out in an electrochemical membrane bioreactor (EMBR). The EMBR was operated continuously for five days, and readings were taken at regular intervals. This paper has experimental results conducted in EMBR that indicate reduction of BOD, COD, and TDS levels of up to 32.25%, 29.25%, and 31.93%, respectively. Further, it was observed that a current of magnitude of 0.00752 mA was generated due to the metabolic activities of bacteria present in municipal wastewater, which gradually decreased day by day due to the decay of bacteria.

Keywords

Acknowledgement

The authors would like to thanks to Science and Engineering Research Board, Govt. of India (Sanction order no. EEQ_2019_000395 dated 19/12/2019) for their financial support and help to carry out this research work. Moreover, the authors express their gratitude to Kanopy Techno Solutions Pvt. Ltd, IIT Kanpur for their technical support.

References

  1. M. Shannon, P. Bohn, M. Elimelech, J. Georgiadis, B Marinas, and A. Mayes, Science and technology for water purification in the coming decades, Nature, 452, 301-310 (2008). https://doi.org/10.1038/nature06599
  2. A. Pruss-Ustun, J. Bartram, T. Clasen, J. Colford, O. Cumming, V. Curtis, S. Bonjour, A. Dangour, J. France, L. Fewtrell, M. Freeman, B. Gordon, P. Hunter, R. Johnston, C. Mathers, D. Mausezahl, K. Medlicott, M. Neira, M. Stocks, J. Wolf, and S. Cairncross, Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: A retrospective analysis of data from 145 countries, Trop. Med. Int. Health, 19, 894-905 (2014). https://doi.org/10.1111/tmi.12329
  3. Z. Wang, J. Ma, C. Tang, K. Kimura, Q. Wang, and X. Han, Membrane cleaning in membrane bioreactors: A review, J. Membr. Sci., 468, 276-307 (2014). https://doi.org/10.1016/j.memsci.2014.05.060
  4. O. Iorhemen, R. Hamza, and J. Tay, Membrane bioreactor (MBR) technology for wastewater treatment and reclamation, Membranes, 6, 33 (2016). https://doi.org/10.3390/membranes6020033
  5. F. Meng, S. Chae, A. Drews, M. Kraume, H. Shin, and F. Yang, Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material, Water Res, 43, 1489-1512 (2009). https://doi.org/10.1016/j.watres.2008.12.044
  6. S. Judd, The status of membrane bioreactor technology. Trends Biotechnol, 26, 109-116 (2008). https://doi.org/10.1016/j.tibtech.2007.11.005
  7. S. Vinardell, S. Astals, M. Peces, M. A. Cardete, I. Fernandez, J. Mata-Alvarez, and J. Dosta, Advances in anaerobic membrane bioreactor technology for municipal wastewater treatment: A 2020 updated review, Renew. Sust. Energ. Rev., 130, 109936 (2020). https://doi.org/10.1016/j.rser.2020.109936
  8. D. Graaff, H. Temmink,G. Zeeman, and C. Buisman, Anaerobic Treatment of Concentrated Black Water in a UASB Reactor at a Short HRT, Water, 2, 101-119 (2010). https://doi.org/10.3390/w2010101
  9. A. Drews, Membrane fouling in membrane bioreactors-Characterisation, contradictions, cause and cures, J. Membr. Sci., 363, 28 (2010). https://doi.org/10.1016/j.memsci.2010.06.046
  10. F. Meng, S. Zhang, Y. Oh, Z. Zhou, H. Shin, and S. Chae, Fouling in membrane bioreactors: An updated review, Water Res., 114, 151-180 (2017). https://doi.org/10.1016/j.watres.2017.02.006
  11. Y. Yang, S. Qiao, R. Jin, J. Zhou, and X. Quan, A novel aerobic electrochemical membrane bioreactor with CNTs hollow fiber membrane by electrochemical oxidation to improve water quality and mitigate membrane fouling, Water Res., 151, 54-63 (2019). https://doi.org/10.1016/j.watres.2018.12.012
  12. G. M. F. Pierangeli, R. A. Ragio, R. F. Benassi, G. B. Gregoracci, and E. L. Subtil, Pollutant removal, electricity generation and microbial community in an electrochemical membrane bioreactor during co-treatment of sewage and landfill leachate, J. Env. Chem. Engg., 9, 106205 (2021). https://doi.org/10.1016/j.jece.2021.106205
  13. Y. Wu, Y. Lu, Y. Cai, Y. Yang, X. Yang, and H. Song, The trade-off between nitrogen removal and current generation in an air-cathode bioelectrochemically assisted osmotic membrane bioreactor, Desalination, 526, 115518 (2022). https://doi.org/10.1016/j.desal.2021.115518
  14. D. Hu, L. Liu, W. Liu, L. Yu, J. Dong, F. Han, H. Wang, Z. Chen, H. Ge, B. Jiang, X. Wang, Y. Cui, W. Zhang, Y. Zhang, S. Liu, and L. Zhao, Improvement of sludge characteristics and mitigation of membrane fouling in the treatment of pesticide wastewater by electrochemical anaerobic membrane bioreactor, Water Res., 213, 118153 (2022). https://doi.org/10.1016/j.watres.2022.118153
  15. L. Wang, Y. Wu, Z. You, H. Bao, L. Zhang, and J. Wang, Electrochemical impedance spectroscopy (EIS) reveals the role of microbial fuel cell-ceramic membrane bioreactor (MFC-CMBR): Electricity utilization and membrane fouling, Water Res., 222, 118854 (2022). https://doi.org/10.1016/j.watres.2022.118854
  16. B. Jiang, Q. Zeng, J. Li, S. Shi, Z. Chen, Y. Cui, D. Hu, Y. Sui, H. Ge, S. Che, and Y. Qi, Performance enhancement, membrane fouling mitigation and eco-friendly strategy by electric field coupled membrane bioreactor for treating mariculture wastewater, Bioresour. Technol., 361, 127725 (2022). https://doi.org/10.1016/j.biortech.2022.127725
  17. J. Ma, Z. Wang, D. He, Y. Li, and Z. Wu, Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment, Water Res., 78, 98-110 (2015). https://doi.org/10.1016/j.watres.2015.03.033
  18. Y. Wang, G. Sheng, B. Shi, W. Li, and Han-Qing Yu, A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment, Sci. Rep, 3, 1864 (2013). https://doi.org/10.1038/srep01864
  19. Y. Wang, G. Sheng, W. Li, Y. Huang, Y. Yu, R. Zeng, and H. Yu, Development of a novel bioelectrochemical membrane reactor for wastewater treatment, Environ. Sci. Technol., 45, 9256-9261 (2011). https://doi.org/10.1021/es2019803
  20. N. Li, L. Li, and F. Yang, Power generation enhanced by a polyaniline-phytic acid modified filter electrode integrating microbial fuel cell with membrane bioreactor, Sep. Purif. Technol, 132, 213-217 (2014). https://doi.org/10.1016/j.seppur.2014.05.028
  21. Y. Wang, X. Liu, W. Li, F Li, Y. Wang, G. Sheng, J. Raymond, and H. Yu, A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment, Appl. Energy, 98, 230-235 (2012). https://doi.org/10.1016/j.apenergy.2012.03.029
  22. L. Xu, G. Zhang, G. Yuan, H. Liu, J. Liu, and F. Yang, Anti-fouling performance and mechanism of anthraquinone/polypyrrole composite modified membrane cathode in a novel MFC-aerobic MBR coupled system, RSC Adv., 5, 22533-22543 (2015). https://doi.org/10.1039/C5RA00735F
  23. J. Ma, Z. Wang, D. He, Y. Li, and Z. Wu, Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment, Water Res., 78, 98-110 (2015). https://doi.org/10.1016/j.watres.2015.03.033
  24. K. Bani-Melhem and M. Elektorowicz, Development of a novel submerged membrane electro-bioreactor (SMEBR): Performance for fouling reduction, Environ. Sci. Technol., 44, 3298-3304 (2010). https://doi.org/10.1021/es902145g
  25. J. Li, Z. Ge, and Z. He, A fluidized bed membrane bioelectrochemical reactor for energy-efficient wastewater treatment, Bioresour Technol., 167, 310-315 (2014). https://doi.org/10.1016/j.biortech.2014.06.034
  26. Z. Tait, M. Thompson, and A. Stubbins, Chemical fouling reduction of a submersible steel spectrophotometer in estuarine environments using a sacrificial zinc anode, J. Environ. Qual., 44, 1321-1325 (2015). https://doi.org/10.2134/jeq2014.11.0484
  27. W. Zw, J Huang, and CW Zhu, Electrochemical membrane bioreactors for sustainable wastewater treatment: Principles and challenges, Chem. Eng. Technol., 36, 2044-2050 (2013). https://doi.org/10.1002/ceat.201300322
  28. T. Li, Y. Cai, X. Yang, Y. Wu, Y. Yang, and H. Song, Microbial fuel cell-membrane bioreactor integrated system for wastewater treatment and bioelectricity production: Overview, Appl. Energy, 98, 230-235 (2012). https://doi.org/10.1016/j.apenergy.2012.03.029
  29. J. Ma, Z. Wang, B. Mao, J. Zhang, and Z. Wu, Electrochemical membrane bioreactors for sustainable wastewater treatment: principles and challenges, Curr. Environ. Eng., 2, 38-49 (2015). https://doi.org/10.2174/221271780201150831145842
  30. Y. Wang, Y. Wang, C. He, H. Yang, G. Sheng, J. Shen, Y. Mu, and H. Yu, Hydrodynamics of an electrochemical membrane bioreactor, Sci. Rep., 5, 10387 (2015). https://doi.org/10.1038/srep10387