DOI QR코드

DOI QR Code

Effect of Active Metal Loading on Catalytic Activity of V2O5/TiO2 Catalysts

V2O5/TiO2 촉매의 활성금속 함량이 촉매 활성에 미치는 영향

  • Jang, Younghee (Department of Environmental Energy Engineering, Graduate School of Kyonggi University) ;
  • Kim, Sung Chul (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 장영희 (경기대학교 일반대학원 환경에너지공학과) ;
  • 김성철 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2022.07.18
  • Accepted : 2022.09.26
  • Published : 2022.10.10

Abstract

In this study, the activity test and characterization were performed to evaluate the hydrogen sulfide removal characteristics using a V/TiO2 catalyst at room temperature. The optimal vanadium loading was 10 wt%, and the durability was greater than 60 minutes at 60~80% relative humidity. The Brunauer-Emmett-Teller (BET) surface area and raman spectroscopy results confirmed that the structure of the vanadium site exposed to the surface was a dominant factor in catalyst activity. From Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray crystallography (XRD) analyses, it was found that sulfur can be accumulated on the catalyst surface, which results in a decrease in durability under catalytic activity tests. Therefore, it is judged that a combined process of catalytic oxidation and regeneration is needed.

본 연구에서는 V/TiO2 촉매를 사용하여 황화수소 상온 제거 특성을 평가하기 위해 촉매 활성 실험 및 특성 분석을 수행하였다. 최적 바나듐 함량은 10 wt%였고, 상대습도 60~80% 조건에서 60분 이상의 내구성을 보였다. BET 및 raman 분석을 통해, 표면에 노출된 바나듐의 구조가 V/TiO2 촉매 활성의 지배적인 요인인 것으로 나타났다. 또한 SEM, EDS 그리고 XRD 분석은 촉매 표면에 생성물인 황이 축적될 수 있음을 보였으며, 결과적으로 촉매의 내구성이 감소되었다. 따라서 촉매 산화와 재생 공정의 연계가 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2022학년도 경기대학교 대학원 연구원장학생 장학금 지원에 의하여 수행되었음.

References

  1. B.-C. Ko, J.-K. Lee, Y.-S. Lee, M.-G. Lee, and S.-K. Kam, A Study on Odor Emission Characteristics of Domestic Sewage Treatment Facilities Using Composite Odor Concentration and Hydrogen Sulfide Concentration, J. Environ. Sci., 21, 1379-1388 (2012).
  2. H. W. Ryu, K. S. Jo, T. H. Lee, and M. Huh, Management of offensive odors in swine production facilities: I. domestic status and offensive odors in swine production, J. Korean Soc. Odor Res. Eng., 2, 69-77 (2003).
  3. K. Y. Kim, J. B. Park, C.-N. Kim, and K. J. Lee, Field study of emission characteristics of ammonia and hydrogen sulfide by pig building type, J. Korean Soc. Occup. Environ. Hyg., 16, 36-43 (2016).
  4. B. C. Ko, J. K. Lee, Y. S. Lee, M. G. Lee, and S. K. Kam, A study on odor emission characteristics of domestic sewage treatment facilities using composite odor concentration and hydrogen sulfide concentration, J. Environ. Sci., 21, 1379-1388 (2012).
  5. S. Y. Choi, Y. H. Jang, and S. S. Kim, A study on the optimization of sewage sludge-based adsorbent carbonization condition for improving adsorption capacity of hydrogen sulfide (H2S), Appl. Chem. Eng., 29, 765-771 (2018). https://doi.org/10.14478/ACE.2018.1094
  6. S. Y. Choi, D. H. Han, and S. S. Kim, A study on the optimization of active material and preparation of granular adsorbentof metal oxide-based adsorbent for adsorption of hydrogen sulfide (H2S), Appl. Chem. Eng., 30, 460-465 (2019). https://doi.org/10.14478/ACE.2019.1041
  7. S. Y. Choi, D. H. Han, and S. S. Kim, A study on the optimization of activated carbon adsorbent preparation condition and evaluation of application supporting of K-Fe-Li ternary metal ions for improving adsorption capacity of hydrogen sulfide (H2S), Clean Technol., 25, 189-197 (2019).
  8. A. Choudhury, T. Shelford, G. Felton, C. Gooch, and S. Lansing, Evaluation of hydrogen sulfide scrubbing systems for anaerobic digesters on two U.S. dairy farms, Energies, 12, 4605 (2019). https://doi.org/10.3390/en12244605
  9. M. P. Chenar, H. Savoji, M. Soltanieh, T. Matsuura, and S. Tabe, Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and Cardo-type polyimide hollow fiber membranes, Korean J. Chem. Eng., 28, 902-913 (2011). https://doi.org/10.1007/s11814-010-0437-7
  10. H. Eom, Y. Jang, S. Y. Choi, S. M. Lee, and S. S. Kim, Application and regeneration of honeycomb-type catalysts for the selective catalytic oxidation of H2S to sulfur from landfill gas, Appl. Catal. A: Gen., 590, 117365 (2020). https://doi.org/10.1016/j.apcata.2019.117365
  11. H. Eom, S. M. Lee, H. Kang, Y. H. Lee, S. W. Chang, and S. S. Kim, Effect of VOx surface density and structure on VOx/TiO2 catalysts for H2S selective oxidation reaction, J. Ind. Eng. Chem., 92, 252-262 (2020). https://doi.org/10.1016/j.jiec.2020.09.013
  12. H. Kang, Y. H. Lee, S. C. Kim, S. W. Chang, and S. S. Kim, Optimization of preparation conditions of vanadium-based catalyst for room temperature oxidation of hydrogen sulfide, Appl. Chem. Eng., 32, 326-331 (2021). https://doi.org/10.14478/ACE.2021.1028
  13. D. Barba, V. Palma, and P. Ciambelli, Screening of catalysts for H2S abatement from biogas to feed molten carbonate fuel cells, Int. J. Hydrog. Energy, 38, 328-335 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.010
  14. V. Palma and D. Barba, H2S purification from biogas by direct selective oxidation to sulfur on V2O5-CeO2 structured catalysts, Fuel, 135, 99-104 (2014). https://doi.org/10.1016/j.fuel.2014.06.012
  15. V. Palma and D. Barba, Vanadium-ceria catalysts for H2S abatement from biogas to feed to MCFC, Int. J. Hydrog. Energy, 42, 1891-1898 (2017). https://doi.org/10.1016/j.ijhydene.2016.06.160
  16. V. Palma, D. Barba, and V. Gerardi, Honeycomb-structured catalysts for the selective partial oxidation of H2S, J. Clean. Prod., 111, 69-75 (2016). https://doi.org/10.1016/j.jclepro.2015.07.105
  17. M. Y. Shin, D. W. Park, and J. S. Chung, Vanadium-containing catalysts for the selective oxidation of H2S to elemental sulfur in the presence of excess water, Catal. Today, 63, 405-411 (2000). https://doi.org/10.1016/S0920-5861(00)00485-5
  18. L. Shen, X. Zheng, G. Lei, X. Li, Y. Cao, and L. Jiang, Hierarchically porous γ-Al2O3 nanosheets: Facile template-free preparation and reaction mechanism for H2S selective oxidation, Chem. Eng. J., 346, 238-248 (2018). https://doi.org/10.1016/j.cej.2018.03.157
  19. B. Pongthawornsakun, S. Phatyenchuen, J. Panpranot, and P. Praserthdam, The low temperature selective oxidation of H2S to elemental sulfur on TiO2 supported V2O5 catalysts, J. Environ. Chem. Eng., 6, 1414-1423 (2018). https://doi.org/10.1016/j.jece.2018.01.045
  20. X. Kan, X. Chen, W. Chen, J. Mi, J.-Y. Zhang, F. Liu, A. Zheng, K. Huang, L. Shen, C. Au, and L. Jiang, Nitrogen-decorated, ordered mesoporous carbon spheres as high-efficient catalysts for selective capture and oxidation of H2S, ACS Sustain. Chem. Eng., 7, 7609-7618 (2019). https://doi.org/10.1021/acssuschemeng.8b05852
  21. D.-W. Park, B.-K. Park, D.-K. Park, and H.-C. Woo, Vanadium-antimony mixed oxide catalysts for the selective oxidation of H2S containing excess water and ammonia, Appl. Catal. A: Gen., 223, 215-224 (2002). https://doi.org/10.1016/S0926-860X(01)00760-8
  22. K. Y. Cho, K. J. Kim, and D. H. Riu, Effect of heating rate and pressure on pore growth of porous carbon materials, Carbon Lett., 7, 271-276 (2006).
  23. D. W. Kwon, K. H. Park, and S. C. Hong, The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method, Appl. Catal. A: Gen., 451, 227-235 (2013). https://doi.org/10.1016/j.apcata.2012.09.050
  24. S. H. Moon, S. J. Lee, and I. S. Ryu, A study on the regeneration of scr catalyst deactivated by unburned carbon deposition, J. Korean Soc. Environ. Eng., 32, 928-935 (2010).
  25. N. Arora, G. Deo, I. E. Wachs, and A. M. Hirt, Surface aspects of bismuth-metal oxide catalyst, J. Catal., 159, 1-13 (1996). https://doi.org/10.1006/jcat.1996.0058
  26. J. H. Shin, D. W. Kwon, and S. C. Hong, A study of structural characteristic control and reaction activity of V/TiO2 for NH3-SCR according to preparation method, J. Korean Soc. Atmos. Environ., 33, 297-305 (2017). https://doi.org/10.5572/KOSAE.2017.33.4.297