DOI QR코드

DOI QR Code

Melanocytotoxic chemicals and their toxic mechanisms

  • Received : 2022.05.06
  • Accepted : 2022.06.27
  • Published : 2022.10.15

Abstract

Melanocyte cell death can lead to various melanocyte-related skin diseases including vitiligo and leukoderma. Melanocytotoxic chemicals are one of the most well-known causes of nongenetic melanocyte-related diseases, which induce melanocyte cell death through apoptosis. Various chemicals used in cosmetics, medicine, industry and food additives are known to induce melanocyte cell death, which poses a significant risk to the health of consumers and industrial workers. This review summarizes recently reported melanocytotoxic chemicals and their mechanisms of toxicity in an effort to provide insight into the development of safer chemicals.

Keywords

Acknowledgement

This work was supported by the Grants from National Research Foundation of Korea (NRF-2020R1I1A1A01067636) and Ministry of Science and ICT (MSIT) (2018R1A5A2025286).

References

  1. Schallreuter KU, Kothari S, Chavan B, Spencer JD (2008) Regulation of melanogenesis-controversies and new concepts. Exp Dermatol 17:395-404. https://doi.org/10.1111/j.1600-0625.2007.00675.x
  2. d'Ischia M, Wakamatsu K, Cicoira F, Di Mauro E, Garcia-Borron JC, Commo S, Galvan I, Ghanem G, Kenzo K, Meredith P, Pezzella A, Santato C, Sarna T, Simon JD, Zecca L, Zucca FA, Napolitano A, Ito S (2015) Melanins and melanogenesis: from pigment cells to human health and technological applications. Pigment Cell Melanoma Res 28:520-544. https://doi.org/10.1111/pcmr.12393
  3. Costin GE, Hearing VJ (2007) Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J 21:976-994. https://doi.org/10.1096/fj. 06- 6649r ev
  4. Plonka PM, Passeron T, Brenner M, Tobin DJ, Shibahara S, Thomas A, Slominski A, Kadekaro AL, Hershkovitz D, Peters E, Nordlund JJ, Abdel-Malek Z, Takeda K, Paus R, Ortonne JP, Hearing VJ, Schallreuter KU (2009) What are melanocytes really doing all day long...? Exp Dermatol 18:799-819. https://doi. org/10. 1111/j. 1600- 0625. 2009. 00912.x https://doi.org/10.1111/j.1600-0625.2009.00912.x
  5. Moreiras H, Seabra MC, Barral DC (2021) Melanin transfer in the epidermis: the pursuit of skin pigmentation control mechanisms. Int J Mol Sci 22:4466. https://doi.org/10.3390/ijms22094466
  6. Liu J, Choy KW, Chan LW, Leung TY, Tam PO, Chiang SW, Lam DS, Pang CP, Lai TY (2010) Tyrosinase gene (TYR) mutations in Chinese patients with oculocutaneous albinism type 1. Clin Exp Ophthalmol 38:37-42. https://doi.org/10.1111/j.1442-9071.2009.02220.x
  7. Hearing VJ (2011) Determination of melanin synthetic pathways. J Invest Dermatol 131:E8-E11. https://doi.org/10.1038/skinbio.2011.4
  8. Lu Y, Tonissen KF, Di Trapani G (2021) Modulating skin colour: role of the thioredoxin and glutathione systems in regulating melanogenesis. Biosci Rep 41:BSR20210427. https://doi.org/10.1042/BSR20210427
  9. Hou L, Pavan WJ (2008) Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? Cell Res 18:1163-1176. https://doi.org/10.1038/cr.2008.303
  10. Hridya H, Amrita A, Mohan S, Gopalakrishnan M, Dakshinamurthy TK, Doss GP, Siva R (2016) Functionality study of santalin as tyrosinase inhibitor: a potential depigmentation agent. Int J Biol Macromol 86:383-389. https://doi.org/10.1016/j.ijbiomac.2016.01.098
  11. Olumide YM, Akinkugbe AO, Altraide D, Mohammed T, Ahamefule N, Ayanlowo S, Onyekonwu C, Essen N (2008) Complications of chronic use of skin lightening cosmetics. Int J Dermatol 47:344-353. https://doi.org/10.1111/j.1365-4632.2008.02719.x
  12. Harris JE (2017) Chemical-induced vitiligo. Dermatol Clin 35:151-161. https://doi.org/10.1016/j.det.2016.11.006
  13. Boissy RE, Manga P (2004) On the etiology of contact/occupational vitiligo. Pigment Cell Res 17:208-214. https://doi.org/10.1111/j.1600-0749.2004.00130.x
  14. Harris JE (2016) Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo. Immunol Rev 269:11-25. https://doi.org/10.1111/imr.12369
  15. Muralidharan S, Mandrekar P (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 94:1167-1184. https://doi.org/10.1189/jlb.0313153
  16. Gibbons NC, Wood JM, Rokos H, Schallreuter KU (2006) Computer simulation of native epidermal enzyme structures in the presence and absence of hydrogen peroxide (H2O2): potential and pitfalls. J Invest Dermatol 126:2576-2582. https://doi.org/10.1038/sj.jid.5700612
  17. Hoogduijn MJ, Cemeli E, Ross K, Anderson D, Thody AJ, Wood JM (2004) Melanin protects melanocytes and keratinocytes against H2O2-induced DNA strand breaks through its ability to bind Ca2+. Exp Cell Res 294:60-67. https://doi.org/10.1016/j.yexcr.2003.11.007
  18. Whitton M, Pinart M, Batchelor JM, Leonardi-Bee J, Gonzalez U, Jiyad Z, Eleftheriadou V, Ezzedine K (2016) Evidence-based management of vitiligo: summary of a Cochrane systematic review. Br J Dermatol 174:962-969. https://doi.org/10.1111/bjd.14356
  19. Wohler F (1844) Untersuchungen uber das Chinon. https://doi.org/10.1002/jlac.18440510202
  20. Kersey P, Stevenson CJ (1981) Vitiligo and occupational exposure to hydroquinone from servicing self-photographing machines. Contact Dermat 7:285-287. https://doi.org/10.1111/j.1600-0536.1981.tb04080.x
  21. Westerhof W, d'Ischia M (2007) Vitiligo puzzle: the pieces fall in place. Pigment Cell Res 20:345-359. https://doi.org/10.1111/j.1600-0749.2007.00399.x
  22. Levin CY, Maibach H (2001) Exogenous ochronosis. An update on clinical features, causative agents and treatment options. Am J Clin Dermatol 2:213-217. https://doi.org/10.2165/00128071-200102040-00002
  23. Charlin R, Barcaui CB, Kac BK, Soares DB, Rabello-Fonseca R, Azulay-Abulafia L (2008) Hydroquinone-induced exogenous ochronosis: a report of four cases and usefulness of dermoscopy. Int J Dermatol 47:19-23. https://doi.org/10.1111/j.1365-4632.2007.03351.x
  24. Kim M, Baek HS, Lee M, Park H, Shin SS, Choi DW, Lim KM (2016) Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen speciesdependent activation of GADD45. Toxicol In Vitro 32:339-346. https://doi.org/10.1016/j.tiv.2016.02.003
  25. Nagata T, Ito S, Itoga K, Kanazawa H, Masaki H (2015) The mechanism of melanocytes-specific cytotoxicity induced by phenol compounds having a prooxidant effect, relating to the appearance of leukoderma. Biomed Res Int 2015:479798. https://doi.org/10.1155/2015/479798
  26. Sasaki M, Kondo M, Sato K, Umeda M, Kawabata K, Takahashi Y, Suzuki T, Matsunaga K, Inoue S (2014) Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism. Pigment Cell Melanoma Res 27:754-763. https://doi.org/10.1111/pcmr.12269
  27. Kasamatsu S, Hachiya A, Nakamura S, Yasuda Y, Fujimori T, Takano K, Moriwaki S, Hase T, Suzuki T, Matsunaga K (2014) Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold. J Dermatol Sci 76:16-24. https://doi.org/10.1016/j. jderm sci. 2014.07.001
  28. Tanemura A, Yang L, Yang F, Nagata Y, Wataya-Kaneda M, Fukai K, Tsuruta D, Ohe R, Yamakawa M, Suzuki T, Katayama I (2015) An immune pathological and ultrastructural skin analysis for rhododenol-induced leukoderma patients. J Dermatol Sci 77:185-188. https://doi.org/10.1016/j. jderm sci. 2015. 01. 002
  29. Nishioka M, Tanemura A, Yang L, Tanaka A, Arase N, Katayama I (2015) Possible involvement of CCR4+ CD8+ T cells and elevated plasma CCL22 and CCL17 in patients with rhododenolinduced leukoderma. J Dermatol Sci 77:188-190. https://doi. org/10.1016/j.jderm sci.2015.02.014
  30. Fujiyama T, Ikeya S, Ito T, Tatsuno K, Aoshima M, Kasuya A, Sakabe J, Suzuki T, Tokura Y (2015) Melanocyte-specific cytotoxic T lymphocytes in patients with rhododendrol-induced leukoderma. J Dermatol Sci 77:190-192. https://doi.org/10.1016/j.jderm sci.2015.01.017
  31. Cooksey CJ, Jimbow K, Land EJ, Riley PA (1992) Reactivity of orthoquinones involved in tyrosinase-dependent cytotoxicity: differences between alkylthio- and alkoxy-substituents. Melanoma Res 2:283-293. https://doi.org/10.1097/00008390-199212000-00001
  32. Smit NP, Peters K, Menko W, Westerhof W, Pavel S, Riley PA (1992) Cytotoxicity of a selected series of substituted phenols towards cultured melanoma cells. Melanoma Res 2:295-304. https://doi.org/10.1097/00008 390-199212000-00002
  33. Fleischer AB Jr, Schwartzel EH, Colby SI, Altman DJ (2000) The combination of2% 4-hydroxyanisole (Mequinol) and 0.01% tretinoin is effective in improving theappearance of solar lentigines and related hyperpigmented lesions in two doubleblindmulticenter clinical studies. J Am Acad Dermatol 42:459-467. https://doi.org/10.1016/s0190-9622(00)90219-6
  34. Tsuchiya T, Ishida A, Miyata N, Takahashi A, Kamiya S (1988) Effects of 3-tert-Butyl-4-hydroxyanisole and its hydroquinone and quinone metabolites on rat and human embryonic cells in culture. Toxicol In Vitro 2:291-296. https://doi.org/10.1016/0887-2333(88)90048-3
  35. Babich H, Borenfreund E (1990) Cytotoxic effects of food additives and pharmaceuticals on cells in culture as determined with the neutral red assay. J Pharm Sci 79:592-594. https://doi. org/10.1002/jps.2600790709
  36. Vad NM, Kandala PK, Srivastava SK, Moridani MY (2010) Structure-toxicity relationship of phenolic analogs as anti-melanoma agents: an enzyme directed prodrug approach. Chem Biol Interact 183:462-471. https://doi.org/10.1016/j. cbi.2009.11.020
  37. Eisenhofer G, Tian H, Holmes C, Matsunaga J, Roffler-Tarlov S, Hearing VJ (2003) Tyrosinase: a developmentally specific major determinant of peripheral dopamine. FASEB J 17:1248-1255. https://doi.org/10.1096/fj.02-0736com
  38. Mohamad R, Mohamed MS, Suhaili N, Salleh MM, Ariff AB (2010) Kojic acid: applications and development of fermentation process for production. Biotechnol Mol Biol Rev 5:24-37. https://doi.org/10.5897/BMBR2010.0004
  39. Santi MD, Peralta MA, Puiatti M, Cabrera JL, Ortega MG (2019) Melanogenic inhibitory effects of triangularin in B16F0 melanoma cells, in vitro and molecular docking studies. Bioorg Med Chem 27:3722-3728. https://doi.org/10.1016/j.bmc.2019.06.041
  40. Aoki Y, Tanigawa T, Abe H, Fujiwara Y (2007) Melanogenesis inhibition by an oolong tea extract in b16 mouse melanoma cells and UV-induced skin pigmentation in brownish guinea pigs. Biosci Biotechnol Biochem 71:1879-1885. https://doi.org/10.1271/bbb.70099
  41. Lajis AF, Hamid M, Ariff AB (2012) Depigmenting effect of Kojic acid esters in hyperpigmented B16F1 melanoma cells. J Biomed Biotechnol 2012:952452. https://doi.org/10.1155/2012/952452
  42. Ma HL, Whitters MJ, Konz RF, Senices M, Young DA, Grusby MJ, Collins M, Dunussi-Joannopoulos K (2003) IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFNgamma. J Immunol 171:608-615. https://doi.org/10.4049/jimmunol.171.2.608
  43. Shin YJ, Han CS, Lee CS, Kim HS, Ko SH, Hwang SK, Ko SG, Shin JW, Ye SK, Chung MH (2010) Zeolite 4A, a synthetic silicate, suppresses melanogenesis through the degradation of microphthalmia-associated transcription factor by extracellular signal-regulated kinase activation in B16F10 melanoma cells. Biol Pharm Bull 33:72-76. https://doi.org/10.1248/bpb.33.72
  44. Bertolotto C, Bille K, Ortonne JP, Ballotti R (1996) Regulation of tyrosinase gene expression by cAMP in B16 melanoma cells involves two CAT GTG motifs surrounding the TATA box: implication of the microphthalmia gene product. J Cell Biol 134:747-755. https://doi.org/10.1083/jcb.134.3.747
  45. Chen J, Ye Y, Ran M, Li Q, Ruan Z, Jin N (2020) Inhibition of tyrosinase by mercury chloride: spectroscopic and docking studies. Front Pharmacol 11:81. https://doi.org/10.3389/fphar.2020.00081
  46. Mars U, Larsson BS (1999) Pheomelanin as a binding site for drugs and chemicals. Pigment Cell Res 12:266-274. https://doi.org/10.1111/j.1600-0749.1999.tb00760.x
  47. Manini P, Napolitano A, Westerhof W, Riley PA, d'Ischia M (2009) A reactive ortho-quinone generated by tyrosinase-catalyzed oxidation of the skin depigmenting agent monobenzone: self-coupling and thiol-conjugation reactions and possible implications for melanocyte toxicity. Chem Res Toxicol 22:1398-1405. https://doi.org/10.1021/tx900018q
  48. Vrijman C, Hosseinpour D, Bakker JG, Wolkerstorfer A, Bos JD, van der Veen JP, Luiten RM (2013) Provoking factors, including chemicals, in Dutch patients with vitiligo. Br J Dermatol 168:1003-1011. https://doi.org/10.1111/bjd.12162
  49. van den Boorn JG, Jakobs C, Hagen C, Renn M, Luiten RM, Melief CJ, Tuting T, Garbi N, Hartmann G, Hornung V (2016) Inflammasome-dependent induction of adaptive NK cell memory. Immunity 44:1406-1421. https://doi.org/10.1016/j.immuni.2016.05.008
  50. Hariharan V, Klarquist J, Reust MJ, Koshoffer A, McKee MD, Boissy RE, Le Poole IC (2010) Monobenzyl ether of hydroquinone and 4-tertiary butyl phenol activate markedly different physiological responses in melanocytes: relevance to skin depigmentation. J Invest Dermatol 130:211-220. https://doi.org/10.1038/jid.2009.214
  51. Zasada M, Budzisz E (2019) Retinoids: active molecules influencing skin structure formation in cosmetic and dermatological treatments. Postepy Dermatol Alergol 36:392-397. https://doi.org/10.5114/ada.2019.87443
  52. Baldea I, Costin GE, Shellman Y, Kechris K, Olteanu ED, Filip A, Cosgarea MR, Norris DA, Birlea SA (2013) Biphasic promelanogenic and pro-apoptotic effects of all-trans-retinoic acid (ATRA) on human melanocytes: time-course study. J Dermatol Sci 72:168-176. https://doi.org/10.1016/j.jderm sci.2013.06.004
  53. Kasraee B, Fallahi MR, Ardekani GS, Ebrahimi S, Doroudchi G, Omrani GR, Handjani F, Amini M, Tanideh N, Haddadi M, Nikbakhsh M, Jahanbani S, Tran C, Sorg O, Saurat JH (2006) Retinoic acid synergistically enhances the melanocytotoxic and depigmenting effects of monobenzylether of hydroquinone in black guinea pig skin. Exp Dermatol 15:509-514. https://doi.org/10.1111/j.1600- 0625.2006.00441.x
  54. Saez G, Thornalley PJ, Hill HA, Hems R, Bannister JV (1982) The production of free radicals during the autoxidation of cysteine and their effect on isolated rat hepatocytes. Biochim Biophys Acta 719:24-31. https://doi.org/10.1016/0304-4165(82)90302-6
  55. Karg E, Odh G, Rosengren E, Wittbjer A, Rorsman H (1991) Melanin-related biochemistry of IGR 1 human melanoma cells. Melanoma Res 1:5-13. https://doi.org/10.1097/00008390-199104000-00002
  56. Miura K, Ishii T, Sugita Y, Bannai S (1992) Cystine uptake and glutathione level in endothelial cells exposed to oxidative stress. Am J Physiol 262:C50-58. https://doi.org/10.1152/ajpcell.1992.262.1.C50
  57. Scheffel MJ, Scurti G, Wyatt MM, Garrett-Mayer E, Paulos CM, Nishimura MI, Voelkel-Johnson C (2018) N-acetyl cysteine protects anti-melanoma cytotoxic T cells from exhaustion induced by rapid expansion via the downmodulation of Foxo1 in an Aktdependent manner. Cancer Immunol Immunother 67:691-702. https://doi.org/10.1007/s00262- 018- 2120-5
  58. Beberok A, Otreba M, Wrzesniok D, Buszman E (2013) Cytotoxic effect of lomefloxacin in culture of human epidermal melanocytes. Pharmacol Rep 65:689-699. https://doi.org/10.1016/s1734-1140(13)71047-8
  59. Frost JO, Hawkins JE Jr, Daly JF (1960) Kanamycin. II. Ototoxicity. Am Rev Respir Dis 82:23-30. https://doi.org/10.1164/arrd.1960.82.1.23
  60. Nosanchuk JD, Casadevall A (2006) Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother 50:3519-3528. https://doi.org/10.1128/AAC.00545-06
  61. Wrzesniok D, Otreba M, Beberok A, Buszman E (2013) Viability of human melanocytes HEMa-LP exposed to amikacin and kanamycin. Indian J Pharm Sci 75:102-106. https://doi.org/10.4103/0250-474X.113540
  62. Australia-New Zealand Heart Failure Research Collaborative Group (1995) Effects of carvedilol, a vasodilator-β-blocker, in patients with congestive heart failure due to ischemic heart disease. Circulation 92:212-218. https://doi.org/10.1161/01.CIR.92.2.212
  63. Vlahovic-Palcevski V, Milic S, Hauser G, Protic A, Zupan Z, Reljic M, Stimac D (2010) Toxic epidermal necrolysis associated with carvedilol treatment. Int J Clin Pharmacol Ther 48:549-551. https://doi.org/10.5414/cpp48 549
  64. Choi ME, Yoo H, Lee HR, Moon IJ, Lee WJ, Song Y, Chang SE (2020) Carvedilol, an adrenergic blocker, suppresses melanin synthesis by inhibiting the cAMP/CREB signaling pathway in human melanocytes and ex vivo human skin culture. Int J Mol Sci 21:8796. https://doi.org/10.3390/ijms21228796
  65. Eugene AR, Eugene B, Masiak M, Masiak JS (2021) Head-tohead comparison of sedation and somnolence among 37 antipsychotics in schizophrenia, bipolar disorder, major depression, autism spectrum disorders, delirium, and repurposed in COVID-19, infectious diseases, and oncology from the FAERS, 2004-2020. Front Pharmacol 12:621691. https://doi.org/10.3389/fphar.2021.621691
  66. Tardy M, Huhn M, Engel RR, Leucht S (2014) Fluphenazine versus low-potency first-generation antipsychotic drugs for schizophrenia. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009230.pub2
  67. Martin IC (1975) Implications of phenothiazine side effects: a study of antiparkinsonian agents in an older population. Acta Psychiatr Scand 51:110-118. https://doi.org/10.1111/j.1600-0447.1975.tb00220.x
  68. Otreba M, Wrzesniok D, Rok J, Beberok A, Buszman E (2017) Prochlorperazine interaction with melanin and melanocytes. Pharmazie 72:171-176. https://doi.org/10.1691/ph. 2017. 6787
  69. Buszman E, Beberok A, Rozanska R, Orzechowska A (2008) Interaction of chlorpromazine, fluphenazine and trifluoperazine with ocular and synthetic melanin in vitro. Pharmazie 63:372-376. https://doi.org/10.1691/ph.2008.7663
  70. Otreba M, Beberok A, Wrzesniok D, Buszman E (2018) In vitro melanogenesis inhibition by fluphenazine and prochlorperazine in normal human melanocytes lightly pigmented. Daru 26:85-89. https://doi.org/10.1007/s40199-018-0206-4
  71. Antherieu S, Bachour-El Azzi P, Dumont J, Abdel-Razzak Z, Guguen-Guillouzo C, Fromenty B, Robin MA, Guillouzo A (2013) Oxidative stress plays a major role in chlorpromazineinduced cholestasis in human HepaRG cells. Hepatology 57:1518-1529. https://doi.org/10.1002/hep.26160
  72. Tohen M, Vieta E (2009) Antipsychotic agents in the treatment of bipolar mania. Bipolar Disord 11(Suppl 2):45-54. https://doi.org/10.1111/j.1399-5618.2009.00710.x
  73. Leung AT, Cheng AC, Chan WM, Lam DS (1999) Chlorpromazine-induced refractile corneal deposits and cataract. Arch Ophthalmol 117:1662-1663. https://doi.org/10.1001/archopht.117.12.1662
  74. Li J, Tripathi RC, Tripathi BJ (2008) Drug-induced ocular disorders. Drug Saf 31:127-141. https://doi.org/10.2165/00002018-200831020-00003
  75. Richa S, Yazbek JC (2010) Ocular adverse effects of common psychotropic agents: a review. CNS Drugs 24:501-526. https://doi.org/10.2165/11533180-000000000-00000
  76. Otreba M, Beberok A, Wrzesniok D, Rok J, Buszman E (2015) Effect of thioridazine on antioxidant status of HEMn-DP melanocytes. Naunyn Schmiedebergs Arch Pharmacol 388:1097-1104. https://doi.org/10.1007/s00210-015-1144-z
  77. Hartung B, Sampson S, Leucht S (2015) Perphenazine for schizophrenia. Cochrane Database of Syst Rev. https://doi.org/10.1002/14651858.CD003443.pub3
  78. Otreba M, Kosmider L (2021) In vitro anticancer activity of fluphenazine, perphenazine and prochlorperazine. A review. J Appl Toxicol 41:82-94. https://doi.org/10.1002/jat.4046
  79. Wojcikowski J, Maurel P, Daniel WA (2006) Characterization of human cytochrome p450 enzymes involved in the metabolism of the piperidine-type phenothiazine neuroleptic thioridazine. Drug Metab Dispos 34:471-476. https://doi.org/10.1124/dmd.105.006445
  80. Drucker AM, Rosen CF (2011) Drug-induced photosensitivity: culprit drugs, management and prevention. Drug Saf 34:821-837. https://doi.org/10.2165/11592780-000000000-00000
  81. Beutner KR, Geisse JK, Helman D, Fox TL, Ginkel A, Owens ML (1999) Therapeutic response of basal cell carcinoma to the immune response modifier imiquimod 5% cream. J Am Acad Dermatol 41:1002-1007. https://doi.org/10.1016/s0190-9622(99)70261-6
  82. Ulrich C, Busch JO, Meyer T, Nindl I, Schmook T, Sterry W, Stockfleth E (2006) Successful treatment of multiple actinic keratoses in organ transplant patients with topical 5% imiquimod: a report of six cases. Br J Dermatol 155:451-454. https://doi.org/10.1111/j.1365-2133.2006.07233.x
  83. Kim CH, Ahn JH, Kang SU, Hwang HS, Lee MH, Pyun JH, Kang HY (2010) Imiquimod induces apoptosis of human melanocytes. Arch Dermatol Res 302:301-306. https://doi.org/10.1007/s00403-009-1012-0
  84. Penberthy WT, Kirkland JB (2020) Niacin. Present knowledge in nutrition. Elsevier, pp 209-224. https://doi.org/10.1002/9781119946045.ch19
  85. Hegyi J, Schwartz RA, Hegyi V (2004) Pellagra: dermatitis, dementia, and diarrhea. Int J Dermatol 43:1-5. https://doi.org/10.1111/j.1365-4632.2004.01959.x
  86. Villines TC, Kim AS, Gore RS, Taylor AJ (2012) Niacin: the evidence, clinical use, and future directions. Curr Atheroscler Rep 14:49-59. https://doi.org/10.1007/s11883-011-0212-1
  87. Grant RS, Coggan SE, Smythe GA (2009) The physiological action of picolinic acid in the human brain. Int J Tryptophan Res 2:71-79. https://doi.org/10.4137/ijtr.s2469
  88. Gheibi N, Taherkhani N, Ahmadi A, Haghbeen K, Ilghari D (2015) Characterization of inhibitory effects of the potential therapeutic inhibitors, benzoic acid and pyridine derivatives, on the monophenolase and diphenolase activities of tyrosinase. Iran J Basic Med Sci 18:122-129. https://doi.org/10.22038/ijbms.2015. 4012
  89. Ortonne J-P (2012) Vitiligo and other hypomelanoses of hair and skin. Springer Science & Business Media. https://doi.org/10.1007/978-1-4615-9272-3
  90. Ghosh S (2010) Chemical leukoderma: what's new on etiopathological and clinical aspects? Indian J Dermatol 55:255-258. https://doi.org/10.4103/0019- 5154. 70680
  91. Stanley LA, Skare JA, Doyle E, Powrie R, D'Angelo D, Elcombe CR (2005) Lack of evidence for metabolism of p-phenylenediamine by human hepatic cytochrome P450 enzymes. Toxicology 210:147-157. https://doi.org/10.1016/j.tox.2005.01.019
  92. Devos SA, Van Der Valk PG (2001) The risk of active sensitization to PPD. Contact Dermatitis 44:273-275. https://doi.org/10.1034/j.1600-0536.2001.440503.x
  93. Rauscher GH, Shore D, Sandler DP (2004) Hair dye use and risk of adult acute leukemia. Am J Epidemiol 160:19-25. https://doi.org/10.1093/aje/kwh166
  94. Bonifas J, Scheitza S, Clemens J, Blomeke B (2010) Characterization of N-acetyltransferase 1 activity in human keratinocytes and modulation by para-phenylenediamine. J Pharmacol Exp Ther 334:318-326. https://doi.org/10.1124/jpet.110.167874
  95. Chen SC, Chen CH, Tioh YL, Zhong PY, Lin YS, Chye SM (2010) Para-phenylenediamine induced DNA damage and apoptosis through oxidative stress and enhanced caspase-8 and -9 activities in Mardin-Darby canine kidney cells. Toxicol In Vitro 24:1197-1202. https://doi.org/10.1016/j.tiv.2010.02.011
  96. Bhowmick D, Bhar K, Mallick SK, Das S, Chatterjee N, Sarkar TS, Chakrabarti R, Das Saha K, Siddhanta A (2016) Para-phenylenediamine induces apoptotic death of melanoma cells and reduces melanoma tumour growth in mice. Biochem Res Int 2016:3137010. https://doi.org/10.1155/2016/3137010
  97. Angelini E, Marinaro C, Carrozzo AM, Bianchi L, Delogu A, Giannello G, Nini G (1993) Allergic contact dermatitis of the lip margins from para-tertiary-butylphenol in a lip liner. Contact Dermatitis 28:146-148. https://doi.org/10.1111/j.1600-0536.1993.tb03375.x
  98. Yang F, Boissy RE (1999) Effects of 4-tertiary butylphenol on the tyrosinase activity in human melanocytes. Pigment Cell Res 12:237-245. https://doi.org/10.1111/j. 1600- 0749. 1999. tb007 56.x
  99. Kroll TM, Bommiasamy H, Boissy RE, Hernandez C, Nickoloff BJ, Mestril R, Caroline Le Poole I (2005) 4-Tertiary butyl phenol exposure sensitizes human melanocytes to dendritic cell-mediated killing: relevance to vitiligo. J Invest Dermatol 124:798-806. https://doi.org/10.1111/j.0022-202X.2005.23653.x
  100. Gellin GA, Possick PA, Perone VB (1970) Depigmentation from 4-tertiary butyl catechol-an experimental study. J Invest Dermatol 55:190-197. https://doi.org/10.1111/1523-1747.ep12280700
  101. Hoshino S, Nishimura M, Fukuyama K, Gellin GA, Epstein JH (1981) Effects of 4-tertiary butyl catechol on melanocytes of hairless mice. J Invest Dermatol 76:231-238. https://doi.org/10.1111/1523-1747.ep12526042
  102. Mansur JD, Fukuyama K, Gellin GA, Epstein WL (1978) Effects of 4-tertiary butyl catechol on tissue cultured melanocytes. J Invest Dermatol 70:275-279. https://doi.org/10.1111/1523-1747.ep12541510
  103. Thorneby-Andersson K, Sterner O, Hansson C (2000) Tyrosinase-mediated formation of a reactive quinone from the depigmenting agents, 4-tert-butylphenol and 4-tert-butylcatechol. Pigment Cell Res 13:33-38. https://doi.org/10.1034/j.1600-0749.2000.130107.x
  104. Usami Y, Landau AB, Fukuyama K, Gellin GA (1980) Inhibition of tyrosinase activity by 4-tert-butylcatechol and other depigmenting agents. J Toxicol Environ Health 6:559-567. https://doi.org/10.1080/15287398009529873
  105. Soucy NV (2014) Acetophenone. In: Encyclopedia of toxicology. pp 43-45. https://doi.org/10.1016/B978-0-12-386454-3.01157-X
  106. Haldys K, Goldeman W, Anger-Gora N, Rossowska J, Latajka R (2021) Monosubstituted acetophenone thiosemicarbazones as potent inhibitors of tyrosinase: synthesis, inhibitory studies, and molecular docking. Pharmaceuticals 14:74. https://doi.org/10.3390/ph14010074
  107. Tayama K, Takahama M (2002) Depigmenting action of phenylhydroquinone, an O-phenylphenol metabolite, on the skin of JY-4 black guinea-pigs. Pigment Cell Res 15:447-453. https://doi.org/10.1034/j.1600-0749.2002.02057.x
  108. Kahn G (1970) Depigmentation caused by phenolic detergent germicides. Arch Dermatol 102:177-187. https://doi.org/10.1001/archderm.1970.04000080049010
  109. Erdemli Kose SB, Kocasari F (2020) Toxicity of ortho-phenylphenol (OPP) and sodyum ortho-phenylphenate (SOPP). MAKU J Health Sci Inst 8:18-29. https://doi.org/10.24998/maeusabed.701208
  110. Bondi CA, Marks JL, Wroblewski LB, Raatikainen HS, Lenox SR, Gebhardt KE (2015) Human and environmental toxicity of sodium lauryl sulfate (SLS): evidence for safe use in household cleaning products. Environ Health Insights EHI 9:S31765. https://doi.org/10.4137/EHI.S31765
  111. Cheong KA, Noh M, Kim CH, Lee AY (2014) S100B as a potential biomarker for the detection of cytotoxicity of melanocytes. Exp Dermatol 23:165-171. https://doi.org/10.1111/exd.12332
  112. Hall M, Chen Y, Ahsan H, Slavkovich V, van Geen A, Parvez F, Graziano J (2006) Blood arsenic as a biomarker of arsenic exposure: results from a prospective study. Toxicology 225:225-233. https://doi.org/10.1016/j.tox.2006.06.010
  113. Tchounwou PB, Patlolla AK, Centeno JA (2003) Carcinogenic and systemic health effects associated with arsenic exposure-a critical review. Toxicol Pathol 31:575-588. https://doi.org/10.1080/01926230390242007
  114. Garelick H, Jones H, Dybowska A, Valsami-Jones E (2008) Arsenic pollution sources. Rev Environ Contam Toxicol 197:17-60. https://doi.org/10.1007/978-0- 387- 79284-2_2
  115. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79:391-396. https://doi.org/10.1136/pmj.79.933.391
  116. Jung E, Hwang W, Kim S, Kim YS, Kim YS, Lee J, Park D (2011) Depigmenting action of platycodin D depends on the cAMP/Rho-dependent signalling pathway. Exp Dermatol 20:986-991. https://doi.org/10.1111/j.1600-0625.2011.01379.x
  117. Koivisto L, Hakkinen L, Matsumoto K, McCulloch CA, Yamada KM, Larjava H (2004) Glycogen synthase kinase-3 regulates cytoskeleton and translocation of Rac1 in long cellular extensions of human keratinocytes. Exp Cell Res 293:68-80. https://doi. org/10.1016/j.yexcr.2003.09.026
  118. Isokpehi RD, Udensi UK, Anyanwu MN, Mbah AN, Johnson MO, Edusei K, Bauer MA, Hall RA, Awofolu OR (2012) Knowledge building insights on biomarkers of arsenic toxicity to keratinocytes and melanocytes. Biomark Insights 7:127-141. https://doi.org/10.4137/BMI. S7799
  119. Shi H, Hudson LG, Ding W, Wang S, Cooper KL, Liu S, Chen Y, Shi X, Liu KJ (2004) Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chem Res Toxicol 17:871-878. https://doi.org/10.1021/tx049 939e
  120. Ding W, Hudson LG, Liu KJ (2005) Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol Cell Biochem 279:105-112. https://doi.org/10.1007/s11010-005-8227-y
  121. King BS, Cooper KL, Liu KJ, Hudson LG (2012) Poly(ADPribose) contributes to an association between poly(ADP-ribose) polymerase-1 and xeroderma pigmentosum complementation group A in nucleotide excision repair. J Biol Chem 287:39824-39833. https://doi.org/10.1074/jbc.M112.393504
  122. Qin XJ, Hudson LG, Liu W, Timmins GS, Liu KJ (2008) Low concentration of arsenite exacerbates UVR-induced DNA strand breaks by inhibiting PARP-1 activity. Toxicol Appl Pharmacol 232:41-50. https://doi.org/10.1016/j. taap.2008.05.019
  123. Agency EM (2015) European Public MRL assessment report (EPMAR) Propyl 4-hydroxybenzoate and its sodium salt (all food producing species) MA/CVMP/632934/2014. https://www.ema.europa.eu/en/documents/mrl-report/propyl-4-hydroxybenzoate-its-sodium-salt-all-food-producing-species-european-public-mrl-assessment_en.pdf
  124. Vad NM, Shaik IH, Mehvar R, Moridani MY (2008) Metabolic bioactivation and toxicity of ethyl 4-hydroxybenzoate in human SK-MEL-28 melanoma cells. J Pharm Sci 97:1934-1945. https://doi.org/10.1002/jps.21107
  125. Gowder S, Devaraj H (2010) A review of the nephrotoxicity of the food flavor cinnamaldehyde. 6:106-117. https://doi.org/10.2174/157340710791184877
  126. Shreaz S, Wani WA, Behbehani JM, Raja V, Irshad M, Karched M, Ali I, Siddiqi WA, Hun LT (2016) Cinnamaldehyde and its derivatives, a novel class of antifungal agents. Fitoterapia 112:116-131. https://doi.org/10.1016/j.fitote.2016.05.016
  127. Ujang ZB, Subramaniam T, Diah MM, Wahid HB, Abdullah BB, Abd Rashid AHB, Appleton D (2013) Bioguided fractionation and purification of natural bioactives obtained fromalpinia conchigera water extract with melanin inhibition activity. https://doi.org/10.4236/jbnb.2013.43033
  128. Cui Y, Liang G, Hu YH, Shi Y, Cai YX, Gao HJ, Chen QX, Wang Q (2015) Alpha-substituted derivatives of cinnamaldehyde as tyrosinase inhibitors: inhibitory mechanism and molecular analysis. J Agric Food Chem 63:716-722. https://doi.org/10.1021/jf505469k
  129. Ji T, Lin C, Krill LS, Eskander R, Guo Y, Zi X, Hoang BH (2013) Flavokawain B, a kava chalcone, inhibits growth of human osteosarcoma cells through G2/M cell cycle arrest and apoptosis. Mol Cancer 12:55. https://doi.org/10.1186/1476-4598-12-55
  130. Lebot V, Do TK, Legendre L (2014) Detection of flavokavins (A, B, C) in cultivars of kava (Piper methysticum) using high performance thin layer chromatography (HPTLC). Food Chem 151:554-560. https://doi.org/10.1016/j.foodchem.2013.11.120
  131. Mohd Sakeh N, Md Razip NN, Mohd Ma'in FI, Abdul Bahari MN, Latif N, Akhtar MN, Balia Yusof ZN, Ahmad S (2020) Melanogenic inhibition and toxicity assessment of flavokawain A and B on B16/F10 melanoma cells and zebrafish (Danio rerio). Molecules 25:3403. https://doi.org/10.3390/molecules25153403
  132. Doroghazi JR, Ju KS, Brown DW, Labeda DP, Deng Z, Metcalf WW, Chen W, Price NP (2011) Genome sequences of three tunicamycin-producing Streptomyces Strains, S. chartreusis NRRL 12338, S. chartreusis NRRL 3882, and S. lysosuperificus ATCC 31396. J Bacteriol 193:7021-7022. https://doi.org/10.1128/JB.06262-11
  133. Sun X, Wang T, Huang B, Ruan G, Xu A (2020) RIPK1 regulates the survival of human melanocytes upon endoplasmic reticulum stress. Exp Ther Med 19:3239-3246. https://doi.org/10.3892/etm.2020.8575
  134. Dubey SK, Misra K, Tiwari A, Bajaj AK (2006) Chemically induced pigmentary changes of human skin, interaction of some azo dyes with human DNA. J Pharmacol Toxicol 1:234-247. https://doi.org/10.3923/jpt. 2006. 234. 247
  135. Ismaya WT, Rozeboom HJ, Weijn A, Mes JJ, Fusetti F, Wichers HJ, Dijkstra BW (2011) Crystal structure of Agaricus bisporus mushroom tyrosinase: identity of the tetramer subunits and interaction with tropolone. Biochemistry 50:5477-5486. https://doi.org/10.1021/bi200395t
  136. Liu H, Guo H, Jian Z, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L (2020) Copper induces oxidative stress and apoptosis in the mouse liver. Oxidative Med Cell Longevity 2020:1359164. https://doi.org/10.1155/2020/13591 64
  137. Stoewe R, Prutz WA (1987) Copper-catalyzed DNA damage by ascorbate and hydrogen peroxide: kinetics and yield. Free Radic Biol Med 3:97-105. https://doi.org/10.1016/s0891-5849(87)80003-5
  138. Inoue Y, Hasegawa S, Yamada T, Date Y, Mizutani H, Nakata S, Matsunaga K, Akamatsu H (2013) Analysis of the effects of hydroquinone and arbutin on the differentiation of melanocytes. Biol Pharm Bull 36:1722-1730. https://doi.org/10.1248/bpb.b13-00206