Acknowledgement
This project was supported by the Kwangdong Pharm Co. Ltd. This work was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science, ICT & Future Planning)[No. 2018R1A2A1A05078707 and 2020R1A2C1010703]. Young Tae Koo, Seon Joo Lee and Ji Won Jang are employed by the Kwangdong Pharm Co. Ltd, and they along with the other authors, declare no conflict of interest. Graphical abstract is created with BioRender.com.
References
- Jantan I, Ahmad W, Bukhari SNA. 2018. Corrigendum: Plant-derived immunomodulators: an insight on their preclinical evaluation and clinical trials. Front. Plant Sci. 9: 1178. https://doi.org/10.3389/fpls.2018.01178
- Hibbs ML, Tarlinton DM, Armes J, Grail D, Hodgson G, Maglitto R, et al. 1995. Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 83: 301-311. https://doi.org/10.1016/0092-8674(95)90171-X
- Iwashiro M, Messer RJ, Peterson KE, Stromnes IM, Sugie T, Hasenkrug KJ. 2001. Immunosuppression by CD4+ regulatory T cells induced by chronic retroviral infection. Proc. Natl. Acad. Sci. USA 98: 9226-9230. https://doi.org/10.1073/pnas.151174198
- Kechaou N, Chain F, Gratadoux JJ, Blugeon S, Bertho N, Chevalier C, et al. 2013. Identification of one novel candidate probiotic Lactobacillus plantarum strain active against influenza virus infection in mice by a large-scale screening. Appl. Environ. Microbiol. 79: 1491-1499. https://doi.org/10.1128/AEM.03075-12
- Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F. 2010. Probiotics promote gut health through stimulation of epithelial innate immunity. Proc. Natl. Acad. Sci. USA 107: 454-459. https://doi.org/10.1073/pnas.0910307107
- Jeong M, Kim JH, Yang H, Kang SD, Song S, Lee D, et al. 2019. Heat-killed Lactobacillus plantarum KCTC 13314BP enhances phagocytic activity and immunomodulatory effects via activation of MAPK and STAT3 pathways. J. Microbiol. Biotechnol. 29: 1248-1254. https://doi.org/10.4014/jmb.1905.05066
- Jeong M, Kim JH, Lee JS, Kang SD, Shim S, Jung MY, et al. 2020. Heat-killed Lactobacillus brevis enhances phagocytic activity and generates immune-stimulatory effects through activating the TAK1 pathway. J. Microbiol. Biotechnol. 30: 1395-1403. https://doi.org/10.4014/jmb.2002.02004
- Hong KJ, Lee CH, Kim SW. 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. J. Med. Food 7: 430-435. https://doi.org/10.1089/jmf.2004.7.430
- Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Tech. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
- Arboleya S, Watkins C, Stanton C, Ross RP. 2016. Gut bifidobacteria populations in human health and aging. Front. Microbiol. 7: 1204. https://doi.org/10.3389/fmicb.2016.01204
- Kim JH, Doo EH, Jeong M, Kim S, Lee YY, Yang J, et al. 2019. Enhancing immunomodulatory function of red ginseng through fermentation using Bifidobacterium animalis subsp. lactis LT 19-2. Nutrients 11: 1481. https://doi.org/10.3390/nu11071481
- Kim AJ. 2016. Optimization of roasting conditions through antioxidant and anti-inflammatory activities of Yak-kong (Rhynchosia nulubilis). Food Sci. Biotechnol. 25: 1175-1182. https://doi.org/10.1007/s10068-016-0187-3
- Kim JS, Kim JH, Palaniyandi SA, Lee CC, You JW, Yang H, et al. 2019. Yak-Kong soybean (Glycine max) fermented by a novel Pediococcus pentosaceus inhibits the oxidative stress-induced monocyte-endothelial cell adhesion. Nutrients 11: 1380. https://doi.org/10.3390/nu11061380
- Lee CC, Dudonne S, Dube P, Desjardins Y, Kim JH, Kim JS, et al. 2017. Comprehensive phenolic composition analysis and evaluation of Yak-Kong soybean (Glycine max) for the prevention of atherosclerosis. Food Chem. 234: 486-493. https://doi.org/10.1016/j.foodchem.2017.05.012
- Korde LA, Wu AH, Fears T, Nomura AM, West DW, Kolonel LN, et al. 2009. Childhood soy intake and breast cancer risk in Asian American women. Cancer Epidemiol. Biomarkers Prev. 18: 1050-1059. https://doi.org/10.1158/1055-9965.EPI-08-0405
- Wu AH, Yu MC, Tseng CC, Pike MC. 2008. Epidemiology of soy exposures and breast cancer risk. Br. J. Cancer 98: 9-14. https://doi.org/10.1038/sj.bjc.6604145
- Wu AH, Ziegler RG, Nomura AM, West DW, Kolonel LN, Horn-Ross PL, et al. 1998. Soy intake and risk of breast cancer in Asians and Asian Americans. Am. J. Clin. Nutr. 68: 1437S-1443S. https://doi.org/10.1093/ajcn/68.6.1437S
- Namgung HJ, Park HJ, Cho IH, Choi HK, Kwon DY, Shim SM, et al. 2010. Metabolite profiling of doenjang, fermented soybean paste, during fermentation. J. Sci. Food Agric. 90: 1926-1935. https://doi.org/10.1002/jsfa.4036
- Ko JW, Chung YS, Kwak CS, Kwon YH. 2019. Doenjang, a Korean traditional fermented soybean paste, ameliorates neuroinflammation and neurodegeneration in mice fed a high-fat diet. Nutrients 11: 1702. https://doi.org/10.3390/nu11081702
- Kwak CS, Park SC, Song KY. 2012. Doenjang, a fermented soybean paste, decreased visceral fat accumulation and adipocyte size in rats fed with high fat diet more effectively than nonfermented soybeans. J. Med. Food 15: 1-9. https://doi.org/10.1089/jmf.2010.1224
- Kwak CS, Son D, Chung YS, Kwon YH. 2015. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of Doenjang in LPS-stimulated RAW 264.7 macrophages. Nutr. Res. Pract. 9: 569-578. https://doi.org/10.4162/nrp.2015.9.6.569
- Park KY, Chung HY, Kwon SH, Choi JH, Kim JY. 2009. Antiobestic and antiinflammatory effect of doenjang (Korean fermented soy paste). FASEB J. 23.
- Bak SS, Jeong JK, Xin Z, Jeong EJ, Park KY. 2010. Antiobesity effects of doenjang prepared with bioceramic stone water in 3T3-L1 adipocyte. FASEB J. 24.
- Park KY, Jeong KO, Park SY, Rhee SH, Lee YE. 2003. Increased cancer preventive effect of doenjang (Korean soypaste) by adding ginger juice during the fermentation. FASEB J. 17: A1152-A1152.
- Lee CH, Song GS, Kim YS. 2008. Effects of Cheonggukjang and Doenjang on bone loss in ovariectomized rats. Food Sci. Biotechnol. 17: 553-557.
- Laskin DL. 2009. Macrophages and inflammatory mediators in chemical toxicity: a battle of forces. Chem. Res. Toxicol. 22: 1376-1385. https://doi.org/10.1021/tx900086v
- Gordon S. 2016. Phagocytosis: An immunobiologic process. Immunity 44: 463-475. https://doi.org/10.1016/j.immuni.2016.02.026
- Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496: 445-455. https://doi.org/10.1038/nature12034
- Majdalawieh AF, Hmaidan R, Carr RI. 2010. Nigella sativa modulates splenocyte proliferation, Th1/Th2 cytokine profile, macrophage function and NK anti-tumor activity. J. Ethnopharmacol. 131: 268-275. https://doi.org/10.1016/j.jep.2010.06.030
- Tange S, Scherer MN, Graeb C, Weiss T, Justl M, Frank E, et al. 2002. The antineoplastic drug Paclitaxel has immunosuppressive properties that can effectively promote allograft survival in a rat heart transplant model. Transplantation 73: 216-223. https://doi.org/10.1097/00007890-200201270-00011
- Lloberas J, Valverde-Estrella L, Tur J, Vico T, Celada A. 2016. Mitogen-activated protein kinases and mitogen kinase phosphatase 1: a critical interplay in macrophage biology. Front. Mol. Biosci. 3: 28. https://doi.org/10.3389/fmolb.2016.00028
- Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. 2009. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325: 612-616. https://doi.org/10.1126/science.1175202
- Choi JH, Chung MJ, Jeong DY, Oh DH. 2014. Immunostimulatory activity of isoflavone-glycosides and ethanol extract from a fermented soybean product in human primary immune cells. J. Med. Food 17: 1113-1121. https://doi.org/10.1089/jmf.2013.3040
- Lee JH, Paek SH, Shin HW, Lee SY, Moon BS, Park JE, et al. 2017. Effect of fermented soybean products intake on the overall immune safety and function in mice. J. Vet. Sci. 18: 25-32. https://doi.org/10.4142/jvs.2017.18.1.25
- Abruzzo GK, Gill CJ, Flattery AM, Kong L, Leighton C, Smith JG, et al. 2000. Efficacy of the echinocandin caspofungin against disseminated aspergillosis and candidiasis in cyclophosphamide-induced immunosuppressed mice. Antimicrob. Agents Chemother. 44: 2310-2318. https://doi.org/10.1128/AAC.44.9.2310-2318.2000
- Marcus RS, Holsapple MP, Kaminski NE. 1998. Lipopolysaccharide activation of murine splenocytes and splenic B cells increased the expression of aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator. J. Pharmacol. Exp. Ther. 287: 1113-1118.