Acknowledgement
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the Useful Agricultural Life Resources Industry Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Grant No. 121049-2), Korea Basic Science Institute (National Research Facilities and Equipment Center) grant funded by the Ministry of Education (2021R1A6C101A416), and a project to train professional personnel in biological materials by the Ministry of Environment.
References
- Toth B, Hohmann J, Vasas A. 2018. Phenanthrenes: a promising group of plant secondary metabolites. J. Nat. Prod. 81: 661-678. https://doi.org/10.1021/acs.jnatprod.7b00619
- Cao TQ, Kim JA, Woo MH, Min BS. 2021. SARS-CoV-2 main protease inhibition by compounds isolated from Luffa cylindrica using molecular docking. Bioorg. Med. Chem. Lett. 40: 127972. https://doi.org/10.1016/j.bmcl.2021.127972
- Kovacs A, Vasas A, Hohmann J. 2008. Natural phenanthrenes and their biological activity. Phytochemistry 69: 1084-1110. https://doi.org/10.1016/j.phytochem.2007.12.005
- Kim M, Gu MJ, Lee JG, Chin J, Bae JS, Hahn D. 2019. Quantitative analysis of bioactive phenanthrenes in Dioscorea batatas Decne peel, a discarded biomass from postharvest processing. Antioxidants 8: 541. https://doi.org/10.3390/antiox8110541
- Ngan NTT, Hoang NH, Hien NT, Lan NN, Lien NTK, Quang TH, et al. 2020. Cytotoxic phenanthrenes and phenolic constituents from the tubers of Dioscorea persimilis. Phytochem. Lett. 40: 139-143. https://doi.org/10.1016/j.phytol.2020.10.005
- Bus C, Kusz N, Kincses A, Szemeredi N, Spengler G, Bakacsy L, et al. 2020. Antiproliferative phenanthrenes from Juncus tenuis: Isolation and diversity-oriented semisynthetic modification. Molecules 25: 5983. https://doi.org/10.3390/molecules25245983
- Lim JS, Hahn D, Gu MJ, Oh J, Lee JS, Kim JS. 2019. Anti-inflammatory and antioxidant effects of 2,7-dihydroxy-4,6-dimethoxy phenanthrene isolated from Dioscorea batatas Decne. Appl. Biol. Chem. 62: 29. https://doi.org/10.1186/s13765-019-0436-2
- Matsuda H, Morikawa T, Xie H, Yoshikawa M. 2004. Antiallergic phenanthrenes and stilbenes from the tubers of Gymnadenia conopsea. Planta Med. 70: 847-855. https://doi.org/10.1055/s-2004-827234
- Adomeniene A, Venskutonis PR. 2022. Dioscorea spp.: Comprehensive review of antioxidant properties and their relation to phytochemicals and health benefits. Molecules 27: 2530. https://doi.org/10.3390/molecules27082530
- Chi VV. 2012. Dictionary of medicinal plants in Vietnam. Vietnamese Publisher of Medicine 1: 654-655.
- Zhu F. 2015. Isolation, composition, structure, properties, modifications, and uses of yam starch. Compr. Rev. Food Sci. Food Saf. 14: 357-386. https://doi.org/10.1111/1541-4337.12134
- Salehi B, Sener B, Kilic M, Sharifi-Rad J, Naz R, Yousaf Z, et al. 2019. Dioscorea plants: A genus rich in vital nutra-pharmaceuticals - A review. Iran J. Pharm. Res. 18: 68-89.
- Chaniad P, Wattanapiromsakul C, Pianwanit S, Tewtrakul S. 2016. Anti-HIV-1 integrase compounds from Dioscorea bulbifera and molecular docking study. Pharm. Biol. 54: 1077-1085. https://doi.org/10.3109/13880209.2015.1103272
- Woo KW, Kwon OW, Kim SY, Choi SZ, Son MW, Kim KH, et al. 2014. Phenolic derivatives from the rhizomes of Dioscorea nipponica and their anti-neuroinflammatory and neuroprotective activities. J. Ethnopharmacol. 155: 1164-1170. https://doi.org/10.1016/j.jep.2014.06.043
- Boudjada A, Touil A, Bensouici C, Bendif H, Rhouati S. 2019. Phenanthrene and dihydrophenanthrene derivatives from Dioscorea communis with anticholinesterase, and antioxidant activities. Nat. Prod. Res. 33: 3278-3282. https://doi.org/10.1080/14786419.2018.1468328
- Du D, Zhang R, Xing Z, Liang Y, Li S, Jin T, et al. 2016. 9,10-Dihydrophenanthrene derivatives and one 1,4-anthraquinone firstly isolated from Dioscorea zingiberensis C.H. Wright and their biological activities. Fitoterapia 109: 20-24. https://doi.org/10.1016/j.fitote.2015.11.022
- Lim JS, Oh J, Yun HS, Lee JS, Hahn D, Kim JS. 2022. Anti-neuroinflammatory activity of 6,7-dihydroxy-2,4-dimethoxy phenanthrene isolated from Dioscorea batatas Decne partly through suppressing the p38 MAPK/NF-κB pathway in BV2 microglial cells. J. Ethnopharmacol. 282: 114633. https://doi.org/10.1016/j.jep.2021.114633
- Lee W, Jeong SY, Gu MJ, Lim JS, Park EK, Baek MC, et al. 2019. Inhibitory effects of compounds isolated from Dioscorea batatas Decne peel on particulate matter-induced pulmonary injury in mice. J. Toxicol. Environ. Health A 82: 727-740. https://doi.org/10.1080/15287394.2019.1646174
- Yoon KD, Yang MH, Nam SI, Park JH, Kim YC, Kim J. 2007. Phenanthrene derivatives, 3,5-dimethoxyphenanthrene-2,7-diol and batatasin-I, as non-polar standard marker compounds for Dioscorea rhizome. Nat. Prod. Sci. 13: 378-383.
- ICH. 1995. International council for harmonisation of technical requirements for pharmaceuticals for human use (ICH), Validation of analytical procedures: Text and methodology Q2 (R1). Available online: https://www.ema.europa.eu/en/documents/scientificguideline/ich-q-2-r1-validation-analytical-procedures-text-methodology-step-5_en.pdf.
- Choi SI, Han X, Lee SJ, Men X, Oh G, Lee DS, et al. 2022. Validation of an analytical method for the determination of thiabendazole in various food matrices. Separations 9: 135. https://doi.org/10.3390/separations9060135
- Karnes HT, March C. 1993. Precision, accuracy, and data acceptance criteria in biopharmaceutical analysis. Pharm. Res. 10: 1420-1426. https://doi.org/10.1023/A:1018958805795
- AOAC. 2016. Appendix F: Guidelines for standard method performance requirements. AOAC Official methods of analysis. Available online: http://www.eoma.aoac.org/app_f.pdf.
- Dutta B. 2015. Food and medicinal values of certain species of Dioscorea with special reference to Assam. J. Pharmacogn. Phytochem. 3: 15-18.
- Trimanto, Hapsari L. 2015. Diversity and utilization of Dioscorea spp. tuber as alternative food source in Nganjuk Regency, East Java. Agrivita. 37: 97-107.
- Go HK, Rahman MM, Kim GB, Na CS, Song CH, Kim JS, et al. 2015. Antidiabetic effects of yam (Dioscorea batatas) and its active constituent, allantoin, in a rat model of streptozotocin-induced diabetes. Nutrients 7: 8532-8544. https://doi.org/10.3390/nu7105411
- Fu YC, Ferng LHA, Huang PY. 2006. Quantitative analysis of allantoin and allantoic acid in yam tuber, mucilage, skin, and bulbil of the Dioscorea species. Food Chem. 94: 541-549. https://doi.org/10.1016/j.foodchem.2004.12.006
- Sautour M, Mitaine-Offer AC, Lacaille-Dubois MA. 2007. The Dioscorea genus: a review of bioactive steroid saponins. J. Nat. Med. 61: 91-101. https://doi.org/10.1007/s11418-006-0126-3
- Liao YH, Tseng CY, Chen W. 2006. Structural characterization of dioscorin, the major tuber protein of yams, by near infrared Raman spectroscopy. J. Phys. Conf. Ser. 28: 119-122. https://doi.org/10.1088/1742-6596/28/1/025
- Obidiegwu JE, Lyons JB, Chilaka CA. 2020. The Dioscorea genus (Yam) - An appraisal of nutritional and therapeutic potentials. Foods 9: 1034. https://doi.org/10.3390/foods9081034
- Li X, Zhao C, Jing S, Sun J, Li X, Man S, et al. 2017. Novel phenanthrene and isocoumarin from the rhizomes of Dioscorea nipponica Makino subsp. rosthornii (Prain et Burkill) C. T. Ting (Dioscoreaceae). Bioorg. Med. Chem. Lett. 27: 3595-3601. https://doi.org/10.1016/j.bmcl.2017.03.095
- Kim KM, Kang MK, Kim JS, Kim GC, Choi SY. 2015. Physicochemical composition and antioxidant activities of Korean Dioscorea species. J. East Asian Soc. Dietary Life 25: 880-886. https://doi.org/10.17495/easdl.2015.10.25.5.880