References
- Organisation for Economic Co-operation and Development, & Kazimierczak, M. (2016). Trade in Counterfeit and Pirated Goods: Mapping the Economic Impact. OECD Publishing.
- Kim, J. G., Seo J. Y., Lee C. J., Jo S. M., Kim S. M. , Yoon S. M. & Yoon Y.. (2022). Detecting Design Infringement Using Multi-Modal Visual Data and Auto Encoder based on Convolutional Neural Network. Journal of Computer Science and Engineering, 49(2), (137-144).
- Dai, Z., Cai, B., Lin, Y., & Chen, J. (2021). Up-detr: Unsupervised pre-training for object detection with transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 1601-1610).
- Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
- Kumar, S. N., Singal, G., Sirikonda, S., & Nethravathi, R. (2020, December). A novel approach for detection of counterfeit Indian currency notes using deep convolutional neural network. In IOP Conference Series: Materials Science and Engineering (Vol. 981, No. 2, p. 022018). IOP Publishing. https://doi.org/10.1088/1757-899X/981/2/022018
- Lee, S. H., & Lee, H. Y. (2018). Counterfeit bill detection algorithm using deep learning. Int. J. Appl. Eng. Res, 13, 304-310.
- Daoud, E., Vu, D., Nguyen, H., & Gaedke, M. (2020). ENHANCING FAKE PRODUCT DETECTION USING DEEP LEARNING OBJECT DETECTION MODELS. IADIS International Journal on Computer Science & Information Systems, 15(1).
- https://plus.kipris.or.kr/
- Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020, August). End-to-end object detection with transformers. In European conference on computer vision (pp. 213-229). Springer, Cham.
- Zhang, C., & Ma, Y. (Eds.). (2012). Ensemble machine learning: methods and applications. Springer Science & Business Media.
- Zhou, Z. H. (2012). Ensemble methods: foundations and algorithms. CRC press.