Acknowledgement
이 논문은 한국연구재단 지원의 중견연구자 지원사업과제 (2022R1A2C1010353) 및 한국 산업기술통상자원부 지원의 디스플레이 혁신공정 플랫폼구축 기술개발사업(20006467)의 지원으로 작성되었습니다.
References
- Z. Zhang, F. Wen, Z. Sun, X. Guo, T. He and C. LEE, "Artificial Intelligence-Enabled Sensing Technologies in the 5G/Internet of Things Era: From Virtual Reality/Augmented Reality to the Digital Twin", Advanced Intelligent Systems, 2100228 (2022).
- N. Ha, K. Xu, G. Ren, A. Mitchell and J. Z. Ou, "Machine Learning-Enabled Smart Sensor Systems", Advanced Intelligent Systems, 2(9), 2000063 (2020). https://doi.org/10.1002/aisy.202000063
- Y. Djenouri, A. Belhadi, G. Srivastava, E. H. Houssein and J. C. W. Lin, "Sensor data fusion for the industrial artificial intelligence of things", Expert Systems, 39(5), e12875 (2022). https://doi.org/10.1111/exsy.12875
- H. Nazemi, A. Joseph, J. Park and A. Emadi, "Advanced micro-and nano-gas sensor technology: A review", Sensors, 19(6), 1285 (2019).
- K. Zhou, K. Dai, C. Liu and C. Shen,"Flexible conductive polymer composites for smart wearable strain sensors", SmartMat, 1(1), e1010 (2020). https://doi.org/10.1002/smm2.1010
- Y. Yang, Y. Song, X. Bo, J. Min, O. S. Pak, L. Zhu and W. Gao, "A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat", Nature Biotechnology, 38(2), 217-224 (2020). https://doi.org/10.1038/s41587-019-0321-x
- S.B. Choi, J. S. Meena and J. W. Kim, "Technical Trends of Ti3C2TX MXene-based Flexible Electrodes", J. Microelectron. Packag. Soc., 29(1), 17-33 (2022).
- Y. Guo, M. Zhong, Z. Fang, P. Wan and G. Yu, "A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing", Nano Letters, 19(2), 1143-1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
- A. Massaro, G. Ricci, S. Selicato, S. Raminelli and A. Galiano, "Decisional support system with Artificial Intelligence oriented on health prediction using a wearable device and big data", In 2020 IEEE International Workshop on Metrology for Industry 4.0 & IoT (pp. 718-723). IEEE. (2020).
- B. Muthu, C. B. Sivaparthipan, G. Manogaran, R. Sundarasekar, S. Kadry, A. Shanthini and A. Dasel, "A. IOT based wearable sensor for diseases prediction and symptom analysis in healthcare sector", Peer-to-peer Networking and Applications, 13(6), 2123-2134 (2020). https://doi.org/10.1007/s12083-019-00823-2
- N. Sharma, R. Sharma and N. Jindal, "Machine learning and deep learning applications-a vision", Global Transitions Proceedings, 2(1), 24-28 (2021). https://doi.org/10.1016/j.gltp.2021.01.004
- L. Meng, B. McWilliams, W. Jarosinski, H. Y. Park, Y. G. Jung, Lee, J and J. Zhang, "Machine learning in additive manufacturing: a review", Jom, 72(6), 2363-2377 (2020). https://doi.org/10.1007/s11837-020-04155-y
- C. Janiesch, P. Zschech and K. Heinrich, "Machine learning and deep learning", Electronic Markets, 31(3), 685-695 (2021). https://doi.org/10.1007/s12525-021-00475-2
- D. Jakhar and I. Kaur, "Artificial intelligence, machine learning and deep learning: definitions and differences", Clinical and Experimental Dermatology, 45(1), 131-132 (2020). https://doi.org/10.1111/ced.14029
- I. H. Sarker, "Machine learning: Algorithms", real-world applications and research directions. SN Computer Science, 2(3), 1-21 (2021). https://doi.org/10.1007/s42979-020-00382-x
- J. Wei, X. Chu, X. Y. Sun, K. Xu, H. X. Deng, J. Chen and M. Lei, "Machine learning in materials science", InfoMat, 1(3), 338-358 (2019). https://doi.org/10.1002/inf2.12028
- J. Cervantes, F. Garcia-Lamont, L. Rodriguez-Mazahua and A. Lopez, "A comprehensive survey on support vector machine classification: Applications, challenges and trends", Neurocomputing, 408, 189-215 (2020). https://doi.org/10.1016/j.neucom.2019.10.118
- Z. H. Kok, A. R. M. Shariff, M. S. M. Alfatni and S. KhairunnizaBejo, "Support vector machine in precision agriculture: a review", Computers and Electronics in Agriculture, 191, 106546 (2021). https://doi.org/10.1016/j.compag.2021.106546
- P. Dey, S. K. Chaulya and S. Kumar, "Secure decision tree twin support vector machine training and classification process for encrypted IoT data via blockchain platform", Concurrency and Computation: Practice and Experience, 33(16), e6264 (2021). https://doi.org/10.1002/cpe.6264
- B. Charbuty and A. Abdulazeez, "Classification based on decision tree algorithm for machine learning", Journal of Applied Science and Technology Trends, 2(01), 20-28 (2021). https://doi.org/10.38094/jastt20165
- A. Agrawal and A. Choudhary, "Deep materials informatics: Applications of deep learning in materials science", Mrs Communications, 9(3), 779-792 (2019). https://doi.org/10.1557/mrc.2019.73
- D. H. Kim, "Artificial intelligence-based Modeling Mechanisms for Material Analysis and Discovery", Journal of Intelligent Pervasive and Soft Computing, 1(01), 10-15 (2022).
- K. S. Garud, S. Jayaraj and M. Y. Lee, "A review on modeling of solar photovoltaic systems using artificial neural networks, fuzzy logic, genetic algorithm and hybrid models", International Journal of Energy Research, 45(1), 6-35 (2021). https://doi.org/10.1002/er.5608
- S. Salman and X. Liu, "Overfitting mechanism and avoidance in deep neural networks", arXiv preprint arXiv:1901.06566 (2019).
- A. Labach, H. Salehinejad and S. Valaee, "Survey of dropout methods for deep neural networks", arXiv preprint arXiv: 1904.13310 (2019).
- M. Koklu, I. Cinar and Y. S. Taspinar, "Classification of rice varieties with deep learning methods", Computers and Electronics in Agriculture, 187, 106285 (2021). https://doi.org/10.1016/j.compag.2021.106285
- Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma and B. Yu, "Recent advances in convolutional neural network acceleration", Neurocomputing, 323, 37-51 (2019). https://doi.org/10.1016/j.neucom.2018.09.038
- L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma and L. Farhan, "Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions", Journal of Big Data, 8(1), 1-74 (2021). https://doi.org/10.1186/s40537-020-00387-6
- A. Sherstinsky, "Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network", Physica D: Nonlinear Phenomena, 404, 132306 (2020). https://doi.org/10.1016/j.physd.2019.132306
- Y. Luo, Z. Chen and T. Yoshioka, "Dual-path rnn: efficient long sequence modeling for time-domain single-channel speech separation", In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 46-50). IEEE. (2020).
- A.H Shahid and M.P Singh, "A deep learning approach for prediction of Parkinson's disease progression", Biomedical Engineering Letters, 10(2), 227-239 (2020). https://doi.org/10.1007/s13534-020-00156-7
- R. Atri, K. Urban, B. Marebwa, T. Simuni, C. Tanner, A. Siderowf and L. Lancashire. "Deep Learning for Daily Monitoring of Parkinson's Disease Outside the Clinic Using Wearable Sensors", Sensors, 22(18), 6831 (2022). https://doi.org/10.3390/s22186831
- I. El Maachi, G.A Bilodeau and W. Bouachir, "Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait", Expert Systems with Applications, 143, 113075 (2020). https://doi.org/10.1016/j.eswa.2019.113075
- D. L. Lovelace, L. R. McDaniel and D. Golden, "Long-term effects of breast cancer surgery, treatment, and survivor care", Journal of Midwifery & Women's Health, 64(6), 713-724 (2019). https://doi.org/10.1111/jmwh.13012
- Y. Jin, N. Du, Y. Huang, W. Shen, Y. Tan, Y. Z. Chen and C. Tan, "Fluorescence Analysis of Circulating Exosomes for Breast Cancer Diagnosis Using a Sensor Array and Deep Learning", ACS sensors, 1524-1532 (2022).
- Y. Lu, H. Tian, J. Cheng, F. Zhu, B. Liu, S. Wei and Z. L. Wang, "Decoding lip language using triboelectric sensors with deep learning", Nature Communications, 13(1), 1-12 (2022). https://doi.org/10.1038/s41467-021-27699-2
- L. Wen, M. Nie, P. Chen, Y. N. Zhao, J. Shen, C. Wang and Sun, L, "Wearable multimode sensor with a seamless integrated structure for recognition of different joint motion states with the assistance of a deep learning algorithm", Microsystems & Nanoengineering, 8(1), 1-14 (2022). https://doi.org/10.1038/s41378-021-00337-z
- N. Zhu, G. Zhao, X. Zhang and Z. Jin, "Falling motion detection algorithm based on deep learning", IET Image Processing (2021).
- C. Chi, X. Sun, N. Xue, T. Li and C. Liu, "Recent progress in technologies for tactile sensors. Sensors", 18(4), 948 (2018). https://doi.org/10.3390/s18040948
- Y. Wan, Y. Wang and C. F. Guo, "Recent progresses on flexible tactile sensors", Materials Today Physics, 1, 61-73 (2017). https://doi.org/10.1016/j.mtphys.2017.06.002
- Y. Liu, R. Bao, J. Tao, J. Li, M. Dong and C. Pan, "Recent progress in tactile sensors and their applications in intelligent systems", Science Bulletin, 65(1), 70-88 (2020). https://doi.org/10.1016/j.scib.2019.10.021
- Q. Duan, T. Zhang, C. Liu, R. Yuan, G. Li, P. Jun Tiw and R. Huang, "Artificial Multisensory Neurons with Fused Haptic and Temperature Perception for Multimodal In-Sensor Computing", Advanced Intelligent Systems, 2200039 (2022).
- J. Y. Park, W. J. Lee, H. J. Nam and S. H. Choa, "Technology of stretchable interconnector and strain sensors for stretchable electronics", J. Microelectron. Packag. Soc, 25(4), 25-34 (2018).
- J. H. Lee, J. S. Heo, Y. J. Kim, J. Eom, H. J. Jung, J. W. Kim and S. K. Park, "A Behavior-Learned Cross-Reactive Sensor Matrix for Intelligent Skin Perception", Advanced Materials, 32(22), 2000969 (2020). https://doi.org/10.1002/adma.202000969
- M. Kang, I. Cho, J. Park, J. Jeong, K. Lee, B. Lee and I. Park, "High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm", ACS Sensors, 7(2), 430-440 (2022). https://doi.org/10.1021/acssensors.1c01204
- J. Lee, Y. Jung, S. H. Sung, G. Lee, J. Kim, J. Seong and S. Jeon, "High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO 3, SnO2, and NiO-based gas sensors", Journal of Materials Chemistry A, 9(2), 1159-1167 (2021). https://doi.org/10.1039/D0TA08743B