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Abstract 

 
The core of cognitive radio is the problem concerning intelligent decision-making for 
communication parameters, the objective of which is to find the most appropriate parameter 
configuration to optimize transmission performance. The current algorithms have the 
disadvantages of high dependence on prior knowledge, large amount of calculation, and high 
complexity. We propose a new decision-making model by making full use of the interactivity 
of reinforcement learning (RL) and applying the Q-learning algorithm. By simplifying the 
decision-making process, we avoid large-scale RL, reduce complexity and improve timeliness. 
The proposed model is able to find the optimal waveform parameter configuration for the 
communication system in complex channels without prior knowledge. Moreover, this model 
is more flexible than previous decision-making models. The simulation results demonstrate 
the effectiveness of our model. The model not only exhibits better decision-making 
performance in the AWGN channels than the traditional method, but also make reasonable 
decisions in the fading channels. 
 
 
Keywords: reinforcement learning, decision-making, Q-learning, cognitive radio, adaptive 
modulation and coding. 
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 1. Introduction 

In recent years, the rapid development of Internet of Things (IoT) and Vehicle Networks have 
made the requirements of communication quality even higher. At the same time, the 
exploration of extreme communication environments, such as polar and space, also raises 
higher demands on the environment adaptability of communication systems. As the current 
research trend of wireless communication, the concept of cognitive radio (CR) was first 
proposed by Joseph Mitola in 1999 [1], which is a further development based on software 
radio (SR) [2]. Currently, the research on CR primarily focuses on the spectrum, including 
spectrum sensing, dynamic spectrum allocation, and spectrum management [3,4]. However, 
CR should not remain in the "dynamic spectrum using radio" [5]. In our opinion, the next 
generation intelligent radio systems should be able to sense and extract effective information 
from the complex channels, then it would be able to make decisions based on the perceived 
results, and intelligently generate the waveform parameter configuration that is most suitable 
for the current channel [6]. Finally, the reliable and efficient transmission of information can 
be achieved. In this paper, we aim to study the intelligent decision-making of communication 
parameters which is the core component of the above process. 

The decision-making of the waveform parameter can be considered as a further expansion 
and evolution of traditional adaptive modulation and coding (AMC) [7]. However, intelligent 
decision-making methods do not require the complex analysis and calculation of signal to 
noise ratio (SNR) thresholds in AMC, and are not restricted by the limited number of 
thresholds. RL-based decision-making can interact with the environment and does not rely on 
background knowledge and prior information. It has strong learning ability and flexibility. so 
that it can be applied to any channel condition. This paper proposes a new intelligent decision-
making model by introducing the idea of RL. The complete decision-making framework is 
shown in Fig. 1 [8]. 
 

Communication
System

Complex
ChannelRL

 
Fig. 1. The proposed decision-making model framework based on RL. 

 
The previous decision-making models pay too much attention to the complicated analysis 

and modeling for channels. However, in the complex channel, for example, the bit error rate 
(BER) of different modulation and coding is difficult to be calculate. In this paper, we want to 
solve the problem from a new perspective. We do not care about the specific characteristics of 
the channel, but directly obtain the real feedback of the channel through the on-line interaction 
between reinforcement learning (RL) and the environment. Compared with previous decision-
making models, our model has the following advantages:  

•The concise state-action pairs and the modeling method avoid the large-scale problem and 
can converge faster.  

•The model has low complexity and high efficiency, which is suitable for practical 
applications. 

 •The model is not limited by conditions and is applicable in any channel environment. 
We can find the optimal parameter configuration for the communication system in any 

channel, and the model does not depend on any prior knowledge. In practical applications, the 
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RL-based method may exhibit poor performance in the initial exploration stage. In the future, 
we will continue to complete the model to solve this problem. We will design a classifier to 
store and utilize the existing decision-making results reasonably to guide future decisions. 

The remainder of this paper is organized as follows: The related work about communication 
decision-making is presented in Section 2. Section 3 gives a brief overview of RL theory. Then 
we describe the communication system used in the proposed model in Section 4. Based on the 
above, we discuss the problems of existing models and our improvement idea, then propose a 
new RL-based decision-making model in Section 5. The simulation results are shown and 
discussed in Section 6. Finally, the paper is concluded in Section 7 

2. Related Work 
We will classify and introduce the decision-making methods according to their dependence on 
prior knowledge form high to low. The earliest expert system model is enhanced by continuous 
off-line simulation, and ultimately provides decision rules that can be used on-line to adapt the 
radio equipment to various environments [9,10]. However, the complex and varied channels 
in practice bring about great challenges to the design of expert systems. Since the system relies 
entirely on the prior knowledge, it can be difficult for it to work beyond its knowledge reserve. 

The idea of optimization-based decision-making is to transform the decision-making 
problem into a multi-optimization problem. Based on the designed objective function that 
characterizes the communication performance, genetic algorithm (GA) performs an optimal 
search within a configurable range, and finally obtains the optimal parameters. Rieser 
proposed a biologically inspired cognitive radio framework based on GA, and then carried out 
simulation and hardware testing [11]. The related research, such as the cognitive decision 
engines based on ant colony optimization (ACO) [12], bacterial foraging optimization [13], 
etc., have mainly focused on improving the optimization performance of the algorithm. In 
addition, there are cognitive decision-making based on binary chaotic particle swarms (BPSO) 
[14], hill climbing genetic algorithm [15], and other algorithms engine. However, most of the 
researches in this area concentrate on the ideal additive white gaussian noise (AWGN) channel. 
When the real channel is complex, it is difficult for us to make accurate theoretical formulas 
and apply the decision engine. Moreover, the process of the optimization search requires a lot 
of time.  

The ways of off-line learning solve the problem can be roughly divided into two categories. 
One method is collecting a large amount of data under the guidance of theoretical analysis and 
previous experience to train classifiers that can obtain output parameter configuration 
according to the input channel condition. The algorithms include case-based reasoning (CBR) 
[16], neural network (NN) [17], support vector machine (SVM) [18,19], etc. This raises a 
concern: when the deviation between the input channel and the historical training set is large, 
the output result will not be reliable. The other method is to introduce the idea of regression 
prediction into decision-making. Dong used neural networks to predict performance BER [20]. 
Dou proposed a NN-based predictive model by randomly measuring the performance of part 
of the parameter values [21]. Thus, the off-line learning methods require many historical cases 
and are not suitable for guiding decision-making individually. The learning universality and 
real-time performance are both poor.  

On-line learning decision-making is mainly achieved by RL [22]. RL interacts with the 
environment, obtains environmental information and reinforcement signals, and learns based 
on practical experience [23]. RL is very suited to solve decision-making problems because of 
its inherent characteristics. RL was originally used for the spectrum to solve the problems of 
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spectrum congestion and insufficient spectrum utilization [24,25]. Later, RL was used for the 
parameter decision-making problem [26,27]. However, there are still some problems in these 
existing applications: they are still following the idea of optimization based decision-making 
and do not make full use of the interaction between the RL algorithm and the environment. 
We will analyze these RL-based models and propose our improved decision-making model in 
Section 5. 

3. Background On Reinforcement Learning 
In this paper, we just introduce some necessary conceptions to assist readers to easily 
understand the proposed model. The clearly detailed description and mathematical derivations 
are provided in [28]. 

We describe RL model as shown in Fig. 2. 

Agent

Environment

state
tS tR tA

1tR
+

1tS
+  

Fig. 2. A typical reinforcement learning interaction model. 
 

At each step 1,2,3,4,5,6ms = , the agent executes action tA  ,and receives observation tS  and 
scalar reward tR .The environment receives action tA , then emits observation 1tS +  and scalar 
reward 1tR + . The agent's job is to maximize the cumulative reward. RL algorithms can be 
categorized into model-based and model-free according to whether the agent attempts to build 
a model. In model-free algorithms, the agent interacts directly with the environment to 
estimate and optimize the value function. The algorithms can be categorized into Monte-Carlo 
(MC) learning, Temporal-Difference (TD) learning, and TD(λ ) learning. 

Model-free algorithms learn directly from episodes of experience under the condition of 
having no knowledge of MDP transitions /rewards. MC methods must learn from complete 
episodes, which means that MC learning is not bootstrapping. The main idea of MC is to 
replace the value with the mean return. However, TD learning can learn from incomplete 
episodes, which means that it is bootstrapping. In MC learning, we update the value ( )tV S
towards the actual return tG : 
 ( ) ( ) ( )( )t t t tV S V S G V Sα← + −  (1) 

Where α is the updated factor. In TD learning, we update the value ( )tV S  towards the 
estimated return 1 1( )t tR V Sγ+ ++ : 

 ( ) ( ) ( ) ( )( )1 1t t t t tV S V S R V S V Sα γ+ +← + + −  (2) 

1 1( )t tR V Sγ+ ++  is called the TD target, and ( ( ) ( )1 1t t t tR V S V Sδ γ+ += + − ) is called the TD 
error. 

By comparing MC learning and TD learning, we find that TD can learn before knowing 
the final outcome and learn online after every step, but MC must wait until the end of the 
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episode. TD has low variance and is usually more efficient than MC. TD is also more efficient 
in Markov environments because it can exploit the Markov property. 

Sarsa and Q-learning are two classic TD algorithms. Sarsa usually chooses a more 
conservative strategy compared with Q-learning. For example, in a trapped environment, Sarsa 
usually chooses the safest route away from traps. Q-learning, however, is bolder and more 
efficient, it generally chooses the fastest route. In real-time decision-making. problems, 
efficiency is a very important element. We choose the efficient and practical Q-learning 
algorithm to build the proposed model. The convergence of Q-learning can be proven. 

Q-learning is a kind of off-policy learning algorithm. The core idea of off-policy learning 
is learning about policy π from experience samples from another policy µ : 

 1 1
( | )( ) ( ) ( ( ( )) ( ))
( | )

t t
t t t t t

t t

A SV S V S R V S V S
A S

π
α γ

µ + +← + ⋅ + −  (3) 

These methods can also re-use experience generated from old policies and learn about the 
optimal policy following the exploratory policies. Q-learning is one of the best algorithms to 
apply the off-policy idea. The key component of Q-learning is that when the agent updates the 
value of ( , )t tQ S A , it uses the next state-action value of the target policy instead of the value 
of the current behavioral policy. The updated equation is given as (4): 
 1 1( , ) ( , ) [ ( , ) ( , )]t t t t t t t t tQ S A Q S A R Q S A Q S Aα γ+ +← + + −  (4) 
In (4), the behavioral policy α is the greedyε −  policy and the target policy γ  is the greedy 
policy. greedyε −  is the simplest idea for ensuring continual exploration. It makes all m  
actions tried with none-zero probability in any state. Under greedyε −  exploration, the agent 
chooses the greedy action with probability 1 ε− and chooses an action at random with 
probability ε . 

 
*/ 1   if  a arg max ( , )  

( | )
/              otherwise

a A
m Q s a

a s
m

ε ε
π

ε
∈

 + − == 


 (5) 

In this way, the agent can converge to the optimal state-action value function while ensuring 
that it sufficiently experiences reaching new states. 

4. Background on Reinforcement Learning 
We consider an orthogonal frequency division multiplexing (OFDM) system in our model 
design because of its unique efficiency and flexibility. OFDM is a special multicarrier 
transmission scheme that can be viewed as a modulation technique, and it is also a diversity 
technology. Because of the orthogonality of OFDM subcarriers, OFDM can overcome the 
shortcoming of low spectrum utilization in general multi-carrier modulation. Meanwhile, 
multi-carrier transmission can resist frequency selective fading and narrowband interference 
to some extent. OFDM technology has been extensively used in various communication 
scenarios. 

Another feature of OFDM is the ease of the control of the modulation and coding scheme. 
We can arbitrarily configure any M-PSK or M-QAM modulation mode in the transmission 
process. Because the subcarriers are easily allocated and the modulation mode is easy to be 
changed, the OFDM system is suitable for building a parameter configurable decision-making 
model. In the proposed model, we presently stipulate that each subcarrier is modulated with 
the same modulation mode. In future research, we will make more in depth decisions on the 
parameter configuration of each subcarrier according to the channel and spectrum environment. 
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The convolutional code is also selected as the way of channel coding in our system. 
Additionally, a cyclic prefix of the appropriate length is inserted as the guard interval in each 
OFDM symbol so that the inter-symbol interference (ISI) can be eliminated. More specific 
details of the parameter configuration will be provided in the simulation section. 

In this paper, we discuss not only the additive white Gaussian noise (AWGN) channels, but 
also the fading channels. We assume that the channel does not vary within one OFDM symbol. 
At the receiver, we do ideal estimation and equalization in the fading channels to avoid the 
impact of different performance of different channel estimation algorithms. In the decision-
making model, the channel estimation algorithm is not the focus of research. In practical 
applications, we can choose the appropriate algorithm according to different communication 
environments and needs. 

5. RL-Based Decision-Making Model 
In this section, we propose a waveform parameter decision-making model with a new idea 
based on the analysis of the relationship between digital communication system performance 
and communication waveform parameters. 
The decision-making problem of communication waveform parameters can be simplified as 
choosing a best performing parameter configuration to adapt to the current channel. Therefore, 
the problem can be divided in to three key parts, the relationship among them is shown in Fig. 
3:  

The parameters to be decided: Our research is based on the digital communication system. 
By analyzing a typical digital communication link and its modules, we find that The 
modulation scheme and the coding rate of channel coding have the most influence on the 
communication performance. 

The environmental factors affecting decision-making：Various adverse factors in the 
Channel impact on the communication performance, and mostly include noise, interference, 
and fading. We can estimate these factors by channel estimation and spectrum detection.  

 

╙  Waveform Parameters

╛  Communication Performances

╚  Channel Impact Factors
(Noise,interference, and fading ...)

Max

Decision-making
Result

(affect)

(affect)

 
Fig. 3. The disassembly of the waveform parameter decision-making problem. 

 
Theoretical basis for decision-making：The basis for the decision-making problem is the 

way to measure the communication performance. The performance of a digital communication 
system can be described in terms of both effectiveness and reliability. BER is the most intuitive 
parameter to indicate reliability, and the transmission rate is usually used to describe 
effectiveness. 
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Based on the above analysis, we select the modulation order m and the coding rater as the 
parameters to be decided in the OFDM system. Meanwhile, the OFDM Transmission rate and 
BER are the indicators for decision-making. However, effectiveness and reliability are two 
opposite performance indicators．In the same channel environment, when m and rate increased, 
the values of the BER and transmission rate both increase. This also denotes that when the 
effectiveness of the system is getting better, the reliability becomes worse. Therefore, the 
communication performance cannot be absolutely optimal. If the effectiveness is supposed to 
be improved, it will inevitably lead to a decline in the reliability. In the decision-making model, 
we can merely make trade-offs based on the actual demands. 

At present, the research on RL-based waveform parameter decision-making still follows 
the idea of optimization-based decision-making, such as paper[29],[30], etc. The decision-
making process of this model type is described in Fig. 4. 

 
State

Action

Reward

Current channel environment informance

Choose a modulation and coding scheme

Communication performance function value
 

Fig. 4. Previously typical RL-based decision-making model. 
 

In their model, the state is defined as the current channel information and the action refers 
to selecting one modulation and coding scheme from the optional range. The reward function 
still follows the multi-objective function in the optimization-based decision-making: 
 

maxdecision 1 max 2 min 3 constant ( ) ( ) ( ) ( )f x f R f BER f Wω ω ω= + +   (6) 
As described in (6), the goals for their system are: maximizing rate R , minimizing BER and 
keeping the bandwidth W constant. In [29], they also mentioned the problem that attempting 
to achieve multiple goals at the same time can cause the competition. Their approach to 
minimize this dispute is using weight. In every episode, they send training sequences by using 
the current parameter configuration， and then they can obtain the optimization function value 
as the reward. Applying RL to a decision-making problem in this way is a single-step problem, 
and it simplifies the episode to only one step. Thus, they modify the updated (4) as: 
 ( ) ( ) ( )1, , ,t t t t t t tQ S A Q S A R Q S Aα + ← + −   (7) 

However, RL essentially concerns a sequential decision-making problem, timing, which is 
a key factor in RL. Obviously, this type of application does not make full use of the interaction 
between the RL agent and the environment. It may need to try all the optional parameter 
configurations once to make a decision. When there are many optional parameter values, this 
kind of model will be difficult to converge and may suffer from limitations in a large-scale 
search. 

 

State

Action

Reward

Current waveform parameter configuration

Changed direction of the parameter

Communication performance function value
 

Fig. 5. A new application mode of RL in waveform parameter decision-making. 
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Inspired by the classical application of RL in the maze games, we design a new RL-based 
decision-making model, which is represented in Fig. 5. We want to solve the decision-making 
problem in a new way by making full use of the interactivity of RL.  

We desire to simulate the direct process of human making decision. Alternatively, when 
trying to make decision for waveform parameters, we first select one parameter configuration 
arbitrarily. We then try to increase or decrease the parameter values and determine the 
direction of next action according to the communication performance after changing parameter 
value. The decision-making problem is analogous to the problem of finding the shortest path 
to the optimal parameters. It is very similar to the classical maze problem in RL. Therefore, in 
our model, no matter where the parameters locate initially, they will eventually arrive at the 
optimal position. In the context of this idea, RL model can be mapped as follows. 

In our new RL-based decision-making model, we set the state S to the current waveform 
parameter configuration, including the modulation order and the coding rate. The states of the 
modulation mode consist of BPSK, QPSK, 8QAM, 16QAM, 32QAM, and 64QAM, which 
means the modulation order m is from 1 to 6, and we number them as 1,2,3,4,5,6ms = . The 
state of the coding rate c include 1/3, 1/2, 2/3, and 1, which are numbered as 1,2,3,4cs = . 

The action A in the proposed model is the changing direction of the parameter, which means 
whether we increase or decrease the modulation order or the coding rate. In order to build the 
model, we summarize the three optional actions as adding or subtracting ms and cs by 1 or 
keeping the value unchanged. This modeling way avoids too much complexity and too long 
exploration process caused by the excessive actions.!!!  

The most important part of the model is the reward R, which determines the goal of the 
decision-making. We set the reward as the communication performance value at the next time 
after the agent takes an action. As mentioned above, the BER and transmission rate are 
considered as the digital communication performance in this model. They are contradictory 
and cannot be improved simultaneously. Similar to (6), in the optimization-based decision-
making, they want to solve this problem by introducing a set of weighting factors: 

 
1

( ) ( )
k

i i
i

f x f xω
=

=∑  (8) 

where ( )if x is the optimization sub-objective. The weighting factors can take different 
values for different application scenarios. However, there is no reference telling us how to 
choose the weight. This is difficult to measure for the multi-objective optimization. 

In this case, we might as well simplify the optimization objective as obtaining the peak 
balance between BER and transmission rate. In this paper, we establish the performance 
equation with reference to the general throughput formula in AMC: 
 ( ) 21 loge i iP Mη ρ= − ⋅ ⋅  (9) 
where iρ is the data rate and iM means the number of modulation constellations. On this basis, 
we modify (9) to adapt to our actual modeling situation. Specifically, the reward equation 
suitable for our model combining the BER and transmission rate is shown in (10)-(12). 
 rate berC C C= ⋅  (10) 

 ( )rate 6cC m r= ⋅ ⋅  (11) 
 10log ( ber )berC = −  (12) 

berC and rate C respectively represent the reliability and the effectiveness. ber is the actual bit-
error-rate value, which is measured by the power of 10. m is the modulation order which has 
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the same meaning as 2log iM  in (9) and cr  is the coding rate. 
As we are only concerned about the order of the magnitude of ber, we take the logarithm 

of ber and adopt the opposite value as the indicator of reliability in (12). The greater the 
value of berC is, the greater reliability the system exhibits. In addition, we make two 
constraints to ber due to the limited precision: 

•When 0.1ber > , we consider that the BER is beyond the scope of tolerance and record it 
as 1. 

•When 610ber −< , we consider that the BER reaches the ideal state and record it as  
10-6. 

The value of the modulation order m varies from 1 to 6, and the coding rate cr  ranges from 
1/3 to 1. In order to balance the proportion of these two factors in the transmission rate, we 
expand cr  proportionally. We then multiply them together and obtain the square root of this 
product as Crate to maintain an equilibrium with Cber. The system performance C is jointly 
represented by numerically balanced Cber and Crate, as (10). In the practical application, (10) 
can be adjusted according to the actual situation. Therefore, the reward R can be expressed as 

1tR C += . 
Following the analysis of RL algorithms in this section, we use the Q-learning algorithm to 

implement the proposed model. Algorithm 1 demonstrates the procedures to build a decision-
making model based on Q-learning, indicating the entire decision-making process. In the 
following algorithm, ma  and ca are the optional actions in the decision-making. 

 

Algorithm. 1 Decision-making model based on Q-learning 
Initialize ( ),m mQ s a  and ( ),c cQ s a  arbitrarily, for all ( ) ( ), , ,m c m ms S s s S a A s∀ ∈ ∀ ∈ ∀ ∈ ，

( )c ca A s∀ ∈ . 

Repeat 
(for each episode) Initialize ,m cS S . 
Repeat 
(for each step of episode) ( mn  and cn  are alternately decided,  or cmA A A= ,

 or cmS S S= . 
Choose A  from S using policy derived from ( ., )Q eg greedyε − . 
Take action A  ,observe R , S ′ . 
( ) ( ) ( ) ( ), , [ max , , ]

a
Q Q R QS A S A a S AQSα γ

′
′ −′← + +  

S S ′←   
Until episode is end. 

Until S  are terminal 
 

6. Simulation Results and Discussion 
In this section, a set of simulation results are exhibited to analyze the performance of the 
proposed decision-making model for various variable configurations. We then choose the 
optimal variable configuration for Q-learning, and demonstrate its performance compared to 
that of the traditional model. The main parameter configuration as shown in Table 1. 
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Table 1. The main parameter configuration for simulation channels and the OFDM system. 

Channel parameters 
Channel type AWGN/Rayleigh 

0/bE N  -4dB-20dB  

OFDM system 
parameters 

Available subcarriers 64 
Used subcarriers 48 

Cyclic prefix length 1 / 4 Data Length×   
Bandwidth 10MHZ 

Modulation mode 
BPSK，QPSK， 

16QAM，8QAM， 
32QAM，64QAM 

Coding mode Convolutional code 
Coding rate 1/3，1/2，2/3，1 

 
Fig. 6. The decision curves for the AWGN ( 0/ 0dBbE N = ) channel based on Q-learning. 

 

Fig. 6 shows that the final decision-making result for the AWGN ( 0/ 0dBbE N = ) channel. 
The left graph of Fig. 6 presents the decision curve for the modulation order. The simulation 
result demonstrates the modulation order gradually converges at 2ms =  , where the 
modulation mode is QPSK. Similarly, the right graph illustrates that the coding rate ultimately 
converges at 1cs =  The small fluctuations in the decision curve are due to the exploratory 
character of the greedyε −  policy and the closest suboptimal parameters. In order to show the 
decision-making process more clearly, we also take AWGN ( 0/ 0dBbE N = ) channel as an 
example to present the learned Q-value tables for the decisions. 
 

Table 2. Q-value table for the modulation-order decision in the Q-learning model 
( , )

m c
S S  

ma  
(1,1) (1,2) (1,3) (1,4) (2,1) 

+1 8.658 3.323 0 0 5.285 
— 6.004 2.335 0 0 10.82 
-1 / / / / 6.010 

( , )
m c

S S  

ma  
(2,2) (2,3) (2,4) (3,1) (3,2) 

+1 0 0 0 0 0 
— 4.062 0 0 5.223 0 
-1 2.661 0 0 10.55 3.290 
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Table 3. Q-value table for the coding-rate decision in the Q-learning model 
 ( , )

m c
S S  

ma  
(1,1) (1,2) (1,3) (1,4) (2,1) 

+1 2.356 0 0 0 3.320 
— 6.010 2.335 0 0 10.82 
-1 / 5.409 2.123 0 / 

( , )
m c

S S  

ma  
(2,2) (2,3) (2,4) (3,1) (3,2) 

+1 0 0 0 0 0 
— 0 0 0 5.285 0 
-1 5.568 0 0 / 5.223 

 
In Table 2 and Table 3, Each state S corresponds to three optional actions A. The bold data 

in the table represents the most valuable one of the three actions which indicates the final 
decision-making result. We get to know that no matter which initial state ms  and cs  are, they 
will eventually reach the optimal states, 2ms = and 1cs =  , and this is consistent with the 
decision result shown in Fig. 6. The position with Q-value of "0" in the table indicates that this 
state-action pair does not appear in the exploration process, and the Q-value of other states not 
shown in the table is also "0". It illustrates that the RL-based model can avoid the exploration 
of some invalid state-action pairs and improve the decision-making efficiency. Therefore, the 
final decision-making result for AWGN ( 0/ 0dBbE N = ) is (QPSK, 1 / 3cr = ). 

Fig. 7 shows that the final decision-making result for the AWGN ( 0/ 10dBbE N = ) channel 
is 4ms = , 3cs = , which denotes (16QAM, 2 / 3cr =  ). Similarly, the decision-making result 
for the AWGN ( 0/ 20dBbE N = ) channel is (64QAM, 2 / 3cr = ), as shown in Fig. 8. By 
analyzing the decision-making results, we can find that the modulation order and the coding 
rate increase with the increase of the 0/bE N value. This demonstrates the rationality of the 
results. 

 

 
Fig. 7. The decision curves for the AWGN ( 0/ 10dBbE N = ) channel based on Q-learning. 
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Fig. 8. The decision curves for the AWGN ( 0/ 20dBbE N = ) channel based on Q-learning. 
 
Firstly, taking the decision-making in AWGN ( 0/ 20dBbE N = ) channel as an example, we 

compare the convergence performance of BPSO、the existing RL-based decision-making 
model mentioned in Section 5 and the new RL-based model proposed in this paper. The 
specific parameters of the communication system are also configured according to Table 1. 
The simulation results are the average of 500 Monte-Carlo experiments. 

 Comparing these three convergence curves in Fig. 9, the BPSO-based decision engine 
optimization process is relatively gentle and slow, and it converges after about 150 iterations. 
the existing RL-based decision-making model converges at about 75 times. The RL-based 
decision model in this paper gradually converges after exploring about 40 times. The existing 
RL-based decision model has a large number of actions, which leads to a large exploration 
space and a long time to complete the exploration. However, the state-action pairs of the new 
RL-based decision model is simple, avoiding the large- scale exploration problem. It makes 
the decision process more effective and efficient. The initial mean square error (MSE) of the 
convergence curve of the new RL-based decision model in Fig. 9 is large because the model 
is set to start with 1ms =  and 1cs =  for each decision-making process. 

 

 
Fig. 9. Convergence performance comparison between the two decision-making models 
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We continue to simulate our RL-based decision-making model in the AWGN channels 
with various 0/bE N .values, and compare the decision-making results with the MCS method 
[31]. 

 
Fig. 10. Convergence performance comparison between the two decision-making models 

 

The decision-making results we obtained in the ideal AWGN channels with different 
0/bE N , values using the RL-based model and MCS mapping respectively are shown in Fig. 

10. From Fig. 10, it is evident that the performance of the RL-based model is not inferior to 
the MCS method. This means the proposed model can provide reasonable decision-making 
results. The difference in performance between the two methods is primarily due to the limited 
thresholds of the MCS mapping. The coarse discretization of the channel state may lead to 
performance loss in specific regions. Nevertheless, the RL-based model does not need prior 
knowledge or extensive simulations over different scenarios to obtain the 0/bE N thresholds. 

In this subsection, we further compare the performance of the RL -based model and the 
MCS mapping in typical fading channels. We simulate three fading environments defined by 
3GPP TS36.104 protocol in LTE standard for different application scenarios, including 
extended pedestrian A (EPA) channel, extended vehicular A (EVA) channel and extended 
typical urban (ETU) channel by using the Jakes model based Rayleigh-fading channel. In 
Table 4, we list the specific parameter values of each channel model. 

 

Table 4. Channel parameter values including excess tap and relative power for each path. 
EPA EVA ETU 

Delay(ns) Power(dB) Delay(ns) Power(dB) Delay(ns) Power(dB) 
0 0.0 0 0.0 0 -1.0 

30 -1.0 30 -1.5 50 -1.0 
70 -2.0 150 -1.4 120 -1.0 
90 -3.0 310 -3.6 200 0.0 

110 -8.0 370 -0.6 230 0.0 
190 -17.2 710 -9.1 500 0.0 
410 -20.8 1090 -7.0 1600 -3.0 

  1730 -12.0 2300 -5.0 
  2510 -16.9 5000 -7.0 
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Fig. 11. Performance comparison between RL-based model and MCS. 

 
Fig. 11 respectively present the decision-making performance curves of the RL-based 

model and MCS in three kind of Rayleigh- fading channels with different values. Compared 
to Fig. 10, there are apparent inconsistencies between the two decision-making methods. 
Moreover, from the EPA channel to the ETU and EVA channels, the fading becomes severe, 
and the performance of MCS is even less able to keep up with the RL-based model. The 
problem of the MCS mapping is clearly exposed when the Gaussian assumption does not exist. 
In the fading channels, the switching thresholds set on the ideal channel will no longer apply. 
At this time, the proposed RL-based model is still able to learn on-line from the actual 
environment, and exhibits excellent decision-making performance.  

In order to improve decision-making efficiency and make the model more suitable for 
waveform parameter decision-making problems, this subsection will optimize the exploration 
process of RL-based decision model. 

In [30], based on the RL-based waveform parameter decision model shown in Fig. 4, it is 
proposed to classify actions into "good actions" and "bad actions" according to the set 
performance threshold. The threshold is set to a certain percentage of the maximum 
performance value. At the same time, the "action rejection probability" is used to control the 
exploration of "good actions" and "bad actions", and the decision-making efficiency of the 
model can be improved by filtering out "bad actions" to a certain extent. Inspired by this idea, 
this section will also optimize the online decision-making process of the RL-based decision 
model by adding judgments of "good" and "bad" action performance. 

According to the communication performance reward function constructed in the RL-based 
decision model, while the reward is set to 1tR C += , the communication performance function 
change 1t tC C C+∆ = − obtained after the action is used to determine the “good” and “bad” of 
the current action. "Make judgments. If 0.1C∆ ≥ − , the action is considered to be a "good 
action" for the current state, then keep the action and continue the exploration process; if 

0.1C∆ < − , then the action is considered a "bad action" for the current state. Remove the action 
from the range of optional actions in the current state, and re-select from the remaining actions 
to explore.  
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Comparing the performance of the RL-based decision model after adding the "action 
judgment mechanism" and the decision model before the improvement, the communication 
system and channel in the improved decision model still adopt the parameter configuration in 
Table 1.  

Fig. 12-Fig. 14 compare the decision curves of the improved model and the original RL-
based decision model under three different AWGN channels with different 0/bE N  values. It 
can be seen from Fig. 12-Fig. 14 that the trend of the decision curve before and after the 
improvement is basically similar, and the final decision result is also the same, but the 
exploration process of the model after adding the "action judgment mechanism" is obviously 
shortened, and the maximum can be shortened by 9 times, which shows that the improved 
decision model no longer needs to spend time on "poor performance" actions and states, can 
quickly find the position of the optimal waveform parameters and converge, and the 
exploration process is more efficient. 

 

 
Fig. 12. Performance comparison in the AWGN( 0/ 0dBbE N = ) channel 

 

 
Fig. 13. Performance comparison in the AWGN( 0/ 10dBbE N = ) channel 
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Fig. 14. Performance comparison in the AWGN( 0/ 20dBbE N = ) channel 

7. Conclusion 
In this paper, we have proposed a new RL-based decision-making model for the 
communication waveform parameters. Simulation results have demonstrated that the 
configured model has the ability to search for optimal parameters in any channel and is more 
efficient than the existing RL-based decision-making model. Additionally, we have also 
compared the decision-making performance of the proposed model and the MCS mapping 
method in both ideal AWGN channels and fading channels. The proposed model made 
reasonable decisions in the ideal channels, and performed better in several typical fading 
channels. Moreover, we introduced an "action judgment mechanism" to optimize the decision-
making model. Simulations show that the improved model can reduce the exploration process 
of online learning by up to 9 times while ensuring the same decision-making performance. 
There are still some problems need to be solved, such as the adaptability of the model to the 
actual communication channels. In the future research, we will perform simulation 
experiments and further improvements on the practical application of the model. Meanwhile, 
we will further apply machine learning to this system model. 
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