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Abstract. We point out a flaw in a result proved by Singh and Shah [Kyungpook Math.

J., 57(2017), 537-543] which was recently published in Kyungpook Mathematical Journal.

Further, we point out an error in another result of the same paper which we correct and

obtain integral extension of the corrected form.

1. Introduction and Statement of Results

Let p(z) =
n∑

j=0

ajz
j be a polynomial of degree n. We define

∥p∥r =

 1

2π

2π∫
0

∣∣p(eiθ)∣∣r dθ


1
r

, r > 0.(1.1)

From a well known fact of analysis ([12],[14]), we know

lim
r→∞

 1

2π

2π∫
0

∣∣p(eiθ)∣∣r dθ


1
r

= max
|z|=1

|p(z)|.(1.2)

* Corresponding Author.
Received December 6, 2020; revised October 12, 2021; accepted November 8, 2021.
2020 Mathematics Subject Classification: 30C10, 30C15.
Key words and phrases: polynomials, s-fold zero, inequality, integral extension.

455



456 B. Chanam, Kh. B. Devi, Th. B. Singh and Ksh. Krishnadas

Thus, it is appropriate to denote

∥p∥∞ = max
|z|=1

|p(z)|.(1.3)

Further, if we define ∥p∥0 = exp

{
1

2π

2π∫
0

log |p(eiθ)|dθ
}
, then it is easy to verify that

lim
r→0+

∥p∥r = ∥p∥0.

If p′(z) denotes the ordinary derivative of p(z), then

max
|z|=1

|p′(z)| ≤ nmax
|z|=1

|p(z)|.(1.4)

Inequality (1.4) is known in the literature as Bernstein’s Inequality [3] and it is best
possible with equality holding for the polynomial p(z) = αzn, where α ̸= 0 is any
complex number.

If p(z) has no zero in |z| < 1, then inequality (1.4) can be sharpened and
replaced by

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)|.(1.5)

Inequality (1.5) was conjectured by Erdös which was later proved by Lax [7]. In-
equality (1.5) is best possible and become equality for polynomials which have all
the zeros on |z| = 1.

Under the same hypothesis on p(z) as in (1.5), Aziz and Dawood [1] improved
it by proving:

max
|z|=1

|p′(z)| ≤ n

2

{
max
|z|=1

|p(z)| − min
|z|=1

|p(z)|
}
.(1.6)

Equality holds in (1.6) for p(z) = α+ βzn, |α| ≥ |β|.

Malik [8] generalized (1.5) for polynomial p(z) of degree n having no zero in
|z| < k, k ≥ 1 by proving the inequality,

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)|.(1.7)

Chan and Malik [4] considered more general lacunary type of polynomials p(z) =

a0 +
n∑

j=µ

ajz
j , 1 ≤ µ ≤ n, and generalized (1.7) by proving:
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Theorem A. Let p(z) = a0 +
n∑

j=µ

ajz
j, 1 ≤ µ ≤ n, be a polynomial of degree n

having no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kµ
max
|z|=1

|p(z)|.(1.8)

Equality occurs in (1.8) for p(z) = (zµ + kµ)
n
µ , where n is a multiple of µ.

As an improvement of Theorem A, Pukhta [9] proved

Theorem B. Let p(z) = a0 +
n∑

j=µ

ajz
j, 1 ≤ µ ≤ n, be a polynomial of degree n

having no zero in |z| < k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kµ

{
max
|z|=1

|p(z)| − min
|z|=k

|p(z)|
}
.(1.9)

Equality in (1.9) occurs for p(z) = (zµ + kµ)
n
µ , where n is a multiple of µ.

Singh and Shah [13] proved the following result which apparently is a general-
ization and an improvement of Theorems A and B for the class of polynomials with
s-fold zeros at the origin.

Theorem C. Let p(z) = zs

(
a0 +

n−s∑
j=µ

ajz
j

)
, 1 ≤ µ ≤ n − s, 0 ≤ s ≤ n − 1, be a

polynomial of degree n having s-fold zeros at the origin and remaining n − s zeros
in |z| ≥ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤

(n− s)2|a0|+ (n− s)µ|aµ|kµ+1 + s(n− s)|a0|(1 + kµ+1) + sµ|aµ|(kµ+1 + k2µ)

(n− s)|a0|(1 + kµ+1) + µ|aµ|(kµ+1 + k2µ)

×max
|z|=1

|p(z)| − 1

ks
(n− s)2|a0|+ (n− s)µ|aµ|kµ+1

(n− s)|a0|(1 + kµ+1) + µ|aµ|(kµ+1 + k2µ)
min
|z|=k

|p(z)|.

(1.10)

In the same paper [13], the authors further proved the following result as gen-
eralization of Theorem C.

Theorem D. Let p(z) = zs

(
an−sz

n−s +
n−s∑
j=µ

an−s−jz
n−s−j

)
, 1 ≤ µ ≤ n − s,

0 ≤ s ≤ n − 1, be a polynomial of degree n, having s-fold zeros at the origin and
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remaining n− s zeros on |z| = k, k ≤ 1, then

max
|z|=1

|p′(z)| ≤

(1.11)

[
n− s

kn−s−µ+1

{
(n− s)|an−s|k2µ + µ|an−s−µ|kµ−1

µ|an−s−µ|(1 + kµ−1) + (n− s)|an−s|kµ−1(1 + kµ+1)

}
+ s

]
max
|z|=1

|p(z)|.

2. Lemmas

We need the following lemmas to prove the theorem.

Lemma 2.1. If p(z) = a0+
n∑

ν=µ
aνz

ν , 1 ≤ µ ≤ n, is a polynomial of degree n having

no zero in |z| < k, k ≥ 1, then

|q′(z)| ≥ kµ+1


µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ−1 + 1

1 +
µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ+1

 |p′(z)| on |z| = 1,(2.1)

and

µ

n

∣∣∣∣aµa0
∣∣∣∣ kµ ≤ 1,(2.2)

where q(z) = znp

(
1

z

)
.

This lemma is due to Qazi [10].

Lemma 2.2. If p(z) is a polynomial of degree n such that p(z) ̸= 0 in |z| < k,
k > 0, then

|p(z)| ≥ m for |z| ≤ k,

where m = min
|z|=k

|p(z)|.

This lemma is due to Gardner et al. [6].

Lemma 2.3. The function

f(x) = kµ+1


µ

n

(
|aµ|
x

)
kµ−1 + 1

µ

n

(
|aµ|
x

)
kµ+1 + 1

(2.3)

is a non-decreasing function of x.
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This lemma is due to Gardner et al. [6, Lemma 2.6]. However, the authors did not
define the quantities x, µ and k for the conclusion to hold. It is of interest for the
sake of completeness to define these quantities.
From (2.3), we can show that

f ′(x) =

{
µ

n

(
|aµ|
x2

)
k2µ(k2 − 1)

}
{
µ

n

(
|aµ|
x

)
kµ+1 + 1

}2 ,

which implies that, for k ≥ 1 and µ any real, then f ′(x) ≥ 0 for all non-zero real x.
Thus, by the first derivative test, f(x) is non-decreasing for all non-zero real x, any
real µ and k ≥ 1.

Lemma 2.4. If p(z) is a polynomial of degree n and q(z) = znp

(
1

z

)
, then for

each α, 0 ≤ α < 2π and r > 0,

2π∫
0

2π∫
0

∣∣q′(eiθ) + eiαp′(eiθ)
∣∣r dθ dα ≤ 2πnr

2π∫
0

∣∣p(eiθ)∣∣r dθ.(2.4)

The above lemma was proved by Aziz and Rather [2].

3. Theorem and Comment on Theorem D

In this paper, firstly, we prove the following integral extension whose ordinary
version corresponds to the corrected form of Theorem C which we state as the
corollary. Secondly, we point out a flaw concerning Theorem D proved by Singh
and Shah [13].

Theorem. Let p(z) = zs

(
a0 +

n−s∑
j=µ

ajz
j

)
, 1 ≤ µ ≤ n − s, 0 ≤ s ≤ n − 1 be a

polynomial of degree n having s-fold zeros at the origin and remaining n − s zeros
in |z| ≥ k, k ≥ 1, then for every λ with |λ| < 1 and r > 0,

∥zp′(z)− sp(z)∥r ≤ n− s

∥A+ eiα∥r

∥∥∥∥p(z)zs
− λ

ks
m

∥∥∥∥
r

,(3.1)

where

A = kµ+1


µ

n− s

|aµ|
|a0| − |λ|m

ks

kµ−1 + 1

1 +
µ

n− s

|aµ|
|a0| − |λ|m

ks

kµ+1

 .(3.2)
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and m = min
|z|=k

|p(z)| .

Proof. Let

p(z) = zsH(z),(3.3)

where H(z) = a0 +
n−s∑
j=µ

ajz
j , 1 ≤ µ ≤ n − s and 0 ≤ s ≤ n − 1, is a polynomial of

degree n− s having all its zeros in |z| > k, k ≥ 1.
From (3.3) we have

zp′(z) = szsH(z) + zs+1H ′(z)

= sp(z) + zs+1H ′(z).

This gives for |z| = 1,

|p′(z)| ≤ s|p(z)|+ |H ′(z)|.

The above inequality holds for all points on |z| = 1 and hence

|p′(z)| ≤ s|p(z)|+max
|z|=1

|H ′(z)|.(3.4)

Let m1 = min
|z|=k

|H(z)|, then m1 ≤ |H(z)| for |z| = k. As all n−s zeros of H(z) lie in

|z| > k, k ≥ 1, therefore, for every complex number λ such that |λ| < 1, it follows
by Rouche’s theorem that all zeros of the polynomial H(z) − λm1 lie in |z| > k,
k ≥ 1.
Now, the reciprocal polynomial of H(z)− λm1 is

zn

(
H

(
1

z

)
− λm1

)
= znH

(
1

z

)
− znλm1

= zn


p

(
1

z

)
(
1

z

)s

− znλm1

= zn

(
zsp

(
1

z

))
− znλm1

= zs

(
znp

(
1

z

))
− znλm1

= zsq(z)− znλm1

= G(z) (say),
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where q(z) = znp

(
1

z

)
is the reciprocal polynomial of p(z).

Applying Lemma 2.1 to the polynomial H(z)− λm1, we have for |z| = 1

|G′(z)| ≥ kµ+1


µ

n− s

|aµ|
|a0 − λm1|

kµ−1 + 1

1 +
µ

n− s

|aµ|
|a0 − λm1|

kµ+1

 |H ′(z)|

= A1|H ′(z)|,(3.5)

where A1 = kµ+1


µ

n− s

|aµ|
|a0 − λm1|

kµ−1 + 1

1 +
µ

n− s

|aµ|
|a0 − λm1|

kµ+1

.

Now,

m1 = min
|z|=k

|H(z)| = 1

ks
min
|z|=k

|p(z)| = m

ks
, where m = min

|z|=k
|p(z)|.(3.6)

Further, using Lemma 2.2 to the polynomial H(z), we have |H(z)| > m1 for
|z| < k, i.e., in particular, |a0| > m1. Then,

|a0 − λm1| ≥ |a0| − |λ|m1.(3.7)

Thus, using the fact of (3.7) to Lemma 2.3, we have A1 ≥ A, where A is given by
(3.2). Hence, inequality (3.5) gives for |z| = 1

|G′(z)| ≥ A|H ′(z)|,(3.8)

Now, for real numbers α and R ≥ r1 ≥ 1, it is easy to verify that

|R+ eiα| ≥ |r1 + eiα|,

which implies, for r > 0

2π∫
0

|R+ eiα|rdα ≥
2π∫
0

|r1 + eiα|rdα.(3.9)

For points eiθ, 0 ≤ θ < 2π, for which H ′(eiθ) ̸= 0, put R =

∣∣∣∣G′(eiθ)

H ′(eiθ)

∣∣∣∣ and r1 = A,

then from Remark 3.3 and inequality (3.8), we have R ≥ r1 ≥ 1.
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Then, for every r > 0

2π∫
0

∣∣G′(eiθ) + eiαH ′(eiθ)
∣∣r dα =

∣∣H ′(eiθ)
∣∣r 2π∫

0

∣∣∣∣G′(eiθ)

H ′(eiθ)
+ eiα

∣∣∣∣r dα
=
∣∣H ′(eiθ)

∣∣r 2π∫
0

∣∣∣∣∣∣∣∣G′(eiθ)

H ′(eiθ)

∣∣∣∣+ eiα
∣∣∣∣r dα

≥
∣∣H ′(eiθ)

∣∣r 2π∫
0

∣∣A+ eiα
∣∣r dα (using (3.9)),(3.10)

for points eiθ, 0 ≤ θ < 2π, for which H ′(eiθ) ̸= 0. Moreover (3.10) holds trivially
for points eiθ, 0 ≤ θ < 2π for which H ′(eiθ) = 0. Thus, for r > 0

2π∫
0

∣∣A+ eiα
∣∣r dα 2π∫

0

∣∣H ′(eiθ)
∣∣r dθ ≤

2π∫
0

2π∫
0

∣∣G′(eiθ) + eiαH ′(eiθ)
∣∣r dα dθ

≤ 2π(n− s)r
2π∫
0

∣∣H(eiθ)− λm1

∣∣r dθ,
(using Lemma 2.4).

Substituting the value of m1 from equation (3.6) in the above inequality, we have

2π∫
0

∣∣H ′(eiθ)
∣∣r dθ ≤ (n− s)r

1

2π

2π∫
0

|A+ eiα|r dα

2π∫
0

∣∣∣H(eiθ)− λ
m

ks

∣∣∣r dθ.
Multiplying by 1

2π on both sides of the above inequality and taking rth root, we get

∥H ′∥r ≤ n− s

∥A+ eiα∥r

∥∥∥H(z)− λ
m

ks

∥∥∥
r
,

which is equivalent to

∥zp′(z)− sp(z)∥r ≤ (n− s)

∥A+ eiα∥r

∥∥∥∥p(z)zs
− λ

m

ks

∥∥∥∥
r

,

which completes the proof of the theorem.

Remark 3.1. If we let r → ∞ in (3.1), we have

max
|z|=1

|zp′(z)− sp(z)| ≤
(
n− s

1 +A

)
max
|z|=1

∣∣∣∣p(z)zs
− λ

ks
m

∣∣∣∣ ,
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where A is defined by (3.2) in the theorem. Then

max
|z|=1

|p′(z)| −max
|z|=1

|sp(z)| ≤
(
n− s

1 +A

)
max
|z|=1

∣∣∣∣p(z)zs
− λ

ks
m

∣∣∣∣ .(3.11)

Let z0 on |z| = 1 be such that

max
|z|=1

∣∣∣∣p(z)zs
− λ

ks
m

∣∣∣∣ = ∣∣∣∣p(z0)zs0
− λ

ks
m

∣∣∣∣ .(3.12)

Choose the argument of λ suitably such that∣∣∣∣p(z0)zs0
− λ

ks
m

∣∣∣∣ = ∣∣∣∣p(z0)zs0

∣∣∣∣− |λ|m
ks

= |p(z0)| − |λ|m
ks

≤ max
|z|=1

|p(z)| − |λ|m
ks

.(3.13)

Using (3.13) in (3.12), we have

max
|z|=1

∣∣∣∣p(z)zs
− λ

ks
m

∣∣∣∣ ≤ max
|z|=1

|p(z)| − |λ|m
ks

.(3.14)

Combining (3.11) and (3.14), we get

max
|z|=1

|p′(z)| − smax
|z|=1

|p(z)| ≤
(
n− s

1 +A

){
max
|z|=1

|p(z)| − |λ|m
ks

}
,

which on simplification gives

max
|z|=1

|p′(z)| ≤
(
n− s

1 +A
+ s

)
max
|z|=1

|p(z)| − n− s

(1 +A)ks
|λ|m.(3.15)

Now,(
n− s

1 +A
+ s

)
=

 1

(n− s)
(
|a0| − |λ|m

ks

)
(1 + kµ+1) + µ|aµ|(kµ+1 + k2µ)


×
[
(n− s)2

(
|a0| − |λ|m

ks

)
+ (n− s)µ|aµ|kµ+1

+s(n− s)
(
|a0| − |λ|m

ks

)
(1 + kµ+1) + sµ|aµ|(kµ+1 + k2µ)

]
(3.16)

and

n− s

(1 +A)ks
=

1

ks

(n− s)2
(
|a0| − |λ|m

ks

)
+ (n− s)µ|aµ|kµ+1

(n− s)
(
|a0| − |λ|m

ks

)
(1 + kµ+1) + µ|aµ|(kµ+1 + k2µ)

.(3.17)

Using (3.16) and (3.17) in (3.15) and considering the limit as |λ| → 1, we have the
following corrected form of (1.10) of Theorem C.
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Corollary. Let p(z) = zs

(
a0 +

n−s∑
j=µ

ajz
j

)
, 1 ≤ µ ≤ n − s, 0 ≤ s ≤ n − 1, be a

polynomial of degree n having s-fold zeros at the origin and remaining n − s zeros
in |z| ≥ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤

 1

(n− s)
(
|a0| −

m

ks

)
(1 + kµ+1) + µ|aµ|(kµ+1 + k2µ)


×
[
(n− s)2

(
|a0| −

m

ks

)
+ (n− s)µ|aµ|kµ+1

+s(n− s)
(
|a0| −

m

ks

)
(1 + kµ+1) + sµ|aµ|(kµ+1 + k2µ)

]
max
|z|=1

|p(z)|

− 1

ks

(n− s)2
(
|a0| −

m

ks

)
+ (n− s)µ|aµ|kµ+1

(n− s)
(
|a0| −

m

ks

)
(1 + kµ+1) + µ|aµ|(kµ+1 + k2µ)

min
|z|=k

|p(z)|.

Remark 3.2. In fact, inequality (1.10) of Theorem C is not the correct form it
should have been. It must be noted that in the correct form of(1.10), as is given by

the corollary, every factor |a0| wherever it appears, is replaced by |a0| −
m

ks
, where

m = min
|z|=k

|p(z)|.

Remark 3.3. In the theorem, A given by (3.2) is such that A ≥ 1. To see this, we
have from (3.2)

A =

µ

n− s

|aµ|(
|a0| − |λ|m

ks

)k2µ + kµ+1

µ

n− s

|aµ|(
|a0| − |λ|m

ks

)kµ+1 + 1

.

As k ≥ 1 and µ ≥ 1, we have k2µ ≥ kµ+1 ≥ 1. Thus, A ≥ 1.

Comment on Theorem D. Theorem D is incorrect as it is based on an incorrect
lemma (for reference see [5, Lemma 2.2]) as pointed out by Qazi [11].
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Remarks on Some Recent Inequalities 465

[4] T. N. Chan and M. A. Malik, On Erdös-Lax Theorem, Proc. Indian Acad. Sci. Math.
Sci., 92(3)(1983), 191–193.

[5] K. K. Dewan and S. Hans, On maximum modulus for the derivative of a polynomial,
Ann. Univ. Mariae Curie-Skodowska Sect. A, 63(2009), 55–62.

[6] R. B. Gardner, N. K. Govil and S. R. Musukula, Rate of growth of polynomials not
vanishing inside a circle, J. Inequal. Pure Appl. Math., 6(2)(2005), 1–9.

[7] P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull.
Amer. Math. Soc., 50(1944), 509–513.

[8] M. A. Malik, On the derivative of a polynomial, J. London Math. Soc., 2(1)(1969),
57–60.

[9] M. S. Pukhta, On extremal properties and location of zeros of polynomials, Ph.D
Thesis, Jamia Millia Islamia, New Delhi(2002).

[10] M. A. Qazi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc.,
115(1992), 337–343.

[11] M. A. Qazi, Remarks on some recent results about polynomials with restricted zeros,
Ann. Univ. Mariae Curie-Sklodowska Sect. A, 67(2013), 59–64.

[12] W. Rudin, Real and Complex Analysis, Tata Mcgraw-Hill Publishing Company
(Reprinted in India)(1977).

[13] G. Singh and W. M. Shah, Some inequalities for derivatives of polynomials, Kyung-
pook Math. J., 57(2017), 537–543.

[14] A. E. Taylor, Introduction to Functional Analysis, John Wiley and Sons, Inc. New
York(1958).


