DOI QR코드

DOI QR Code

Methodologies for Analyzing Interaction between Shape Charge Jets and Targets

성형작약제트와 표적 상호작용 해석 방법론

  • Received : 2022.07.25
  • Accepted : 2022.08.13
  • Published : 2022.09.30

Abstract

Two methods for analyzing interaction between shaped charge jets and targets are taken in AVEAM-MT (ADD Vulnerability and Effectiveness Assessment Model for Materiel Target), which is a model for vulnerability analysis of materiel targets and being developed by ADD. One is an empirical method improved from the Fireman-Pugh technique for rapid penetration calculation into target components. The other is ADD-TSC(ADD Tandem Shaped Charge), which is a physics-based model extended to be applicable for shaped charge jets from the Walker-Anderson penetration model for higher fidelity analysis. In this paper, the two methods are briefly described, and the empirical technique is compared to the physics-based model in the prediction of residual penetration capacity. The latter is also compared to experimental results found in literature in predicting penetration capacity. These comparisons show that both methods can be used for fast calculations or higher fidelity calculations in vulnerability analysis models like AVEAM-MT which is required to perform a considerable amount of iterative simulation for damage analysis.

국과연은 물자표적에 대한 취약성 해석 모델인 AVEAM-MT(ADD Vulnerability and Effectiveness Assessment Model for Materiel Target)를 개발하고 있다. 이 모델에는 성형작약제트와 표적 간 상호작용을 해석하기 위해 두 가지 방법이 적용되었다. 그중 한 방법은 표적 부품으로 침투를 신속하게 계산하기 위해 Fireman-Pugh 방법을 개량한 경험적 모델이다. 다른 하나는 Walker-Anderson 침투모델을 성형작약제트에 적용할 수 있도록 개량한 물리기반 모델인 ADD-TSC(ADD Tandem Shaped Charge)이다. 이 논문에서는 이 두 방법을 간략히 기술하고, 경험식 방법과 물리기반 모델의 잔류침투성능 예측 결과를 비교한다. 또한 물리기반 모델이 예측한 침투성능과 문헌에서 찾은 실험 결과를 비교한다. 비교 결과는 두 방법 모두 AVEAM-MT와 같은 짧은 시간에 상당한 양의 반복적인 피해해석 시뮬레이션 수행이 요구되는 취약성 해석 모델에 탑재되어 고속 계산 또는 상대적으로 높은 충실도 계산에 유용하게 사용될 수 있음을 보인다.

Keywords

References

  1. Min-ah Kang (2022), "Methodology for Analysis of SC Jet Interaction with Target", KIMST Annual Conference Proceedings, pp.970-971.
  2. Sei-hoon Moon, Min-ah Kang (2020), "Empirical Method for Analyzing SC Jet Target Interaction", ADD Report : ADDR-512-201356.
  3. Kyeong-soo Lee, Sung-Jun Park, Jeong-min Cha, Min-ah Kang, Sei-hoon Moon, Jin-wung Chong (2020), "Development of ADD Vulnerability and Effectiveness Assessment Model for Materiel Target (AVEAMMT)", KIMST Annual Conference Proceedings, pp. 828-829.
  4. Arnold, W., Hartmann, T. and Rottenkolber, E. (2010), "EFP Penetration - Evaluation and post-test analysis of LGG test results", TDW, Report TDW-TN-BD10-0014.
  5. Arnold, W., Hartmann, T. and Rottenkolber, E. (2011), "EFP Penetration Code - Code Theory", TDW, Report TDW-TN-BD-11-0005.
  6. Arnold, W., Hartmann, T., Rottenkolber, E. (2012(a)), "Hydrocode Simulations Related to the Development of a Tandem Shaped Charge Simulation Code", TDW Report.
  7. Arnold, W., Hartmann, T. and Rottenkolber, E. (2012(b)), "Evaluation of Experiments Related to the Development of a Tandem Shaped Charge Simulation Code", TDW-TN-BD-12-0005 Report.
  8. Held M. (1999), "Effectiveness Factors for Explosive Reactive Armour Systems", Propellants, Explosives, Pyrotechnics 24, pp.70-75. https://doi.org/10.1002/(SICI)1521-4087(199904)24:2<70::AID-PREP70>3.0.CO;2-#
  9. Hartmann, T. and Greulich, S. (2022(a)), "Tandem Shaped Charge Simulation Code Theory Manual", NUMERICS Report : B2203-05.
  10. Hartmann, T. and Greulich, S. (2022(b)), "Tandem Shaped Charge Simulation Code: Code Validation", NUMERICS Report : B2203-06.
  11. Holzwarth, A. and Weimann, K. (2002), "Leistungsreduzierung von Hohlladungen bei Belastung der Einlage mit kunstlichen Splittern", Symposium Wirkung und Schutz, Explosivstoffe, Mannheim, Germany.
  12. Klavzar, A. (2010), "Results of BAD tests of model penetrators for explosively formed projectiles (EFP) with the light gas gun", Deutsch-Franzosisches Forschungsinstitut Saint-Louis ISL.
  13. Mott, N. F. (1944), "A Theory of Fragmentation of Shells and Bombs", AC4035, Ministry of Supply, London, Great Britain.
  14. Pedersen, B. and Bless, S. (2005) "CHARACTERIZATION OF BEHIND-ARMOR DEBRIS PARTICLES FROM TUNGSTEN PENETRATORS", 22nd Int. Symp. on Ballistics; Vancouver.
  15. Pugh, E.M. and Fireman E.L. (1994), "Fundamentals of Jet Penetration", Carnegie Institute of Technology, Monthly Report OT9-4 (OSRD-4357).
  16. Schafer, F. K. (2006), "An engineering fragmentation model for the impact of spherical projectiles on thin metallic plates", Int. J. Impact Engng., 33, pp. 745-762. https://doi.org/10.1016/j.ijimpeng.2006.09.067
  17. DRIC (1991), "CE vs MBT Jet Penetration Assessment Rules Book", DRIC-T-8735, SNR-Tesse VLAM Group, Defence Research Information Center, UK.
  18. Walker, J. D. and Anderson, C. E. JR. (1995), "A time-dependent model for long-rod penetration", International Journal of Impact Engineering, 16, pp.19-48. https://doi.org/10.1016/0734-743X(94)00032-R
  19. Walker, J. D. (1999), "An Analytic Velocity Field for Back Surface Bulging", 18thInt. Symposium on Ballistics, San Antonio, TX.