과제정보
AG and TM would like to acknowledge the financial support from DST-SERB (grant number: SERB/AE/2020316).
참고문헌
- Abualnour, M., Houari, M.S.A., Tounsi, A., Bedia, E.A.A. and Mahmoud, S.R. (2018), "A novel quasi-3D trigonometric plate theory for free vibration analysis of advanced composite plates", Compos. Struct. 184, 688-697. https://doi.org/10.1016/j.compstruct.2017.10.047.
- Arefi, M. and Najafitabar, F. (2021), "Buckling and free vibration analyses of a sandwich beam made of a soft core with FG-GNPs reinforced composite face-sheets using Ritz Method", ThinWalled Struct., 158, 107200. https://doi.org/10.1016/j.tws.2020.107200.
- Avila, A.F., Yoshida, M.I., Carvalho, M.G.R., Dias, E.C. and Avila, J. (2010), "An investigation on post-fire behavior of hybrid nanocomposites under bending loads", Compos. Part B: Eng., 41, 380-387. https://doi.org/10.1016/j.compositesb.2010.02.002.
- Azimpour-Shishevan, F., Akbulut, H. and Mohtadi-Bonab, M.A. (2020), "Synergetic effects of carbon nanotube and graphene addition on thermo-mechanical properties and vibrational behavior of twill carbon fiber reinforced polymer composites", Polymer. Testing 90, 106745. https://doi.org/10.1016/j.polymertesting.2020.106745.
- Barati ,M.R. and Zenkour, A.M. (2017), "Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection", Compos. Struct. 181, 194-202. https://doi.org/10.1016/j.compstruct.2017.08.082.
- Barati, M.R. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet reinforced cylindrical shells with different porosity distributions", Mech. Adv. Mater. Struct. 26(18), 1580-1588. https://doi.org/10.1080/15376494.2018.1444235.
- Belarbi, M.O., Garg, A., Houari, M.S.A., Hirane, H., Tounsi, A. and Chalak, H.D. (2021), "A three-unknown refined shear beam element model for buckling analysis of functionally graded curved sandwich beams", Eng. Comput. https://doi.org/10.1007/s00366-021-01452-1.
- Chakrabarti, A., Chalak, H.D., Ashraf, M. and Sheikh, A.H. (2011), "A new FE model based on higher-order zigzag theory for the analysis of laminated sandwich beam with soft core", Compos. Struct. 93, 271-279. https://doi.org/10.1016/j.compstruct.2010.08.031.
- Daikh, A.A. and Zenkour A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on Pasternak foundation under different boundary conditions", J. Appl. Comput. Mech., 6, 1245-1259. https://doi.org/10.22055/jacm.2020.33136.2166.
- Ebrahimi, F. and Dabbagh, A. (2021), "An analytical solution for static stability of multi-scale hybrid nanocomposite plates", Eng. Comput., 37, 545-559. https://doi.org/10.1007/s00366-019-00840-y.
- Ejeh, C.J., Barsoum, I., Chizindu, G.O., Kodie, G.M. and Anachuna, J.I. (2020), "Thermo-elastic behaviour of carbonfiber reinforced polymer and the effect of adding nanoparticles at elevated heat intensity", Heliyon 6, e03622. https://doi.org/10.1016/j.heliyon.2020.e03622.
- Elmarakbi, A., Azoti, W. and Serry, M. (2017), "Multiscale modelling of hybrid glass fibres reinforced graphene platelets polyamide PA6 matrix composites for crashworthiness applications", Appl. Mater. Today 6, 1-8. https://doi.org/10.1016/j.apmt.2016.11.003.
- Garg, A., Belarbi, M.-O., Chalak, H.D. and Chakrabarti, A. (2021a), "A review of the analysis of sandwich FGM structures", Compos. Struct. 258, 113427. https://doi.org/10.1016/j.compstruct.2020.113427.
- Garg, A. and Chalak, H.D. (2021), "Novel higher-order zigzag theory for analysis of laminated sandwich beams", Proc. Inst. Mech. Eng. Part. L.J. Mater. Des. Appl., 235, 176-194. https://doi.org/10.1177/1464420720957045.
- Garg, A., Chalak, H.D., Belarbi, M.O., Chakrabarti, A. and Houari, M.S.A. (2021d), "Finite Element-based Free Vibration Analysis of Power-Law, Exponential and Sigmoidal Functionally Graded Sandwich Beams", J. Inst. Eng. Ser. C. 102(5), 1167-1201. https://doi.org/10.1007/s40032-021-00740-5.
- Garg, A., Chalak, H.D., Belarbi, M.O. and Zenkour, A.M. (2021e), "Hygro-thermo-mechanical based bending analysis of symmetric and unsymmetric power-law, exponential and sigmoidal FG sandwich beams", Mech. Adv. Mater. Struct., 1-23. https://doi.org/10.1080/15376494.2021.1931993.
- Garg, A., Chalak, H.D. and Chakrabarti, A. (2020), "Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory", Mech. Mater. 151, 103634. https://doi.org/10.1016/j.mechmat.2020.103634.
- Georgantzinos, S.K., Giannopoulos, G.I. and Markolefas, S.I., (2020), "Vibration analysis of carbon fiber-graphene-reinforced hybrid polymer composites using finite element techniques", Materials, 13, 4225. https://doi.org/10.3390/ma13194225.
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "New Quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", J. Eng. Mech. 140, 374-383. https://doi.org/10.1061/(asce)em.1943-7889.0000665.
- Jeawon, Y., Drosopoulos, G.A., Foutsitzi, G., Stavroulakis, G.E. and Adali, S. (2021), "Optimization and analysis of frequencies of multi-scale graphene/fibre reinforced nanocomposite laminates with non-uniform distributions of reinforcements", Eng. Struct. 228, 111525. https://doi.org/10.1016/j.engstruct.2020.111525.
- Khaniki, H.B. and Ghayesh, M.H. (2020), "A review on the mechanics of carbon nanotube strengthened deformable structures", Eng. Struct. 220, 110711. https://doi.org/10.1016/j.engstruct.2020.110711.
- Lee, C.Y. and Liu, D. (1992), "An interlaminar stress continuity theory for laminated composite analysis", Comput. Struct. 42, 69-78. https://doi.org/https://doi.org/10.1016/0045-7949(92)90537-A.
- Liu, D., Kitipornchai, S., Chen, W. and Yang, J. (2018), "Threedimensional buckling and free vibration analyses of initially stressed functionally graded graphene reinforced composite cylindrical shell", Compos. Struct. 189, 560-569. https://doi.org/10.1016/j.compstruct.2018.01.106.
- Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater. 3, 398-411. https://doi.org/10.1177/002199836900300304.
- Pai, P.F. (1995), "A new look at shear correction factors and warping functions of anisotropic laminates", Int. J. Solids Struct. 32, 2295-2313. https://doi.org/10.1016/0020-7683(94)00258-X.
- Papageorgiou, D.G., Kinloch, I.A. and Young, R.J. (2017), "Mechanical properties of graphene and graphene-based nanocomposites", Prog. Mater. Sci. 90, 75-127. https://doi.org/10.1016/j.pmatsci.2017.07.004.
- Patni, M., Minera, S., Groh, R.M.J., Pirrera, A. and Weaver, P.M. (2018), "Three-dimensional stress analysis for laminated composite and sandwich structures", Compos. Part B. Eng., 155, 299-328. https://doi.org/10.1016/j.compositesb.2018.08.127.
- Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content", ACS Nano. 3, 3884-3890. https://doi.org/10.1021/nn9010472.
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press, Boca Raton. https://doi.org/10.1201/b12409.
- Sahoo, S. and Jena, P.C. (2020), "Fabrication and characterized of hybrid composite beam material with fillers", Mat. Today: Proc. 26, 2595-2600. https://doi.org/10.1016/j.matpr.2020.02.549.
- Sayyad, A.S. and Ghugal, Y.M. (2015), "On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results", Compos. Struct., 129, 177-201. https://doi.org/10.1016/j.compstruct.2015.04.007.
- Sayyad, A.S. and Ghugal, Y.M. (2017), "Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature", Compos. Struct. 171, 486-504. https://doi.org/10.1016/j.compstruct.2017.03.053.
- Shokrieh, M.M., Esmkhani, M., Haghighatkhah, A.R. and Zhao, Z. (2014), "Flexural fatigue behavior of synthesized graphene/carbon-nanofiber/epoxy hybrid nanocomposites", Mater. Des. 62, 401-408. https://doi.org/https://doi.org/10.1016/j.matdes.2014.05.040.
- Sobhy, M. and Zenkour, A.M. (2019), "Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations", Steel Compos. Struct. 33(2) 195-208. https://doi.org/10.12989/scs.2019.33.2.195.
- Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006), "Graphene-based composite materials", Nature 442, 282-286. https://doi.org/10.1038/nature04969.
- Subramanian, P. (2006), "Dynamic analysis of laminated composite beams using higher order theories and finite elements", Compos. Struct. 73, 342-353, https://doi.org/10.1016/j.compstruct.2005.02.002.
- Sukanya, N.M. and Sundaram, S.K. (2022), "Low-velocity impact studies on Kevlar/Epoxy composites reinforced with carboxyl functionalized Graphene", Mat. Today: Proc. https://doi.org/10.1016/j.matpr.2022.06.393.
- Thomas, B. and Roy, T. (2017), "Vibration and damping analysis of functionally graded carbon nanotubes reinforced hybrid composite shell structures", J. Vib. Control 23, 1711-1738. https://doi.org/10.1177/1077546315599680.
- Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of a single-walled carbon nanotube", Phys. Rev. B 68, 165401. https://doi.org/10.1103/PhysRevB.68.165401.
- Walker, L.S., Marotto, V.R., Rafiee, M.A., Koratkar, N. and Corral, E.L. (2011), "Toughening in Graphene Ceramic Composites", ACS Nano, 5, 3182-3190. https://doi.org/10.1021/nn200319d.
- Yang, J., Wu, H. and Kitipornchai, S. (2017), "Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams", Compos. Struct. 161, 111-118. https://doi.org/10.1016/j.compstruct.2016.11.048.
- Yang, S.Y., Lin, W.N., Huang, Y.L., Tien, H.W., Wang, J.Y., Ma, C.C.M., Li, S.M. and Wang, Y.S. (2011), "Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites", Carbon N.Y. 49, 793-803. https://doi.org/https://doi.org/10.1016/j.carbon.2010.10.014.
- Zenkour, A.M. and Sobhy, M. (2022), "Axial magnetic field effect on wave propagation in bi-layer FG graphene plateletreinforced nanobeams", Eng. Comput. 38(Suppl 2), 1313-1329. https://doi.org/10.1007/s00366-020-01224-3.
- Zhao, S., Zhao, Z., Yang, Z., Ke, L., Kitipornchai, S. and Yang, J. (2020), "Functionally graded graphene reinforced composite structures: A review", Eng. Struct. 210, 110339. https://doi.org/10.1016/j.engstruct.2020.110339.
- Zhou, Z., Ni, Y., Tong, Z., Zhu, S., Sun, J. and Xu, X. (2019), "Accurate nonlinear stability analysis of functionally graded multilayer hybrid composite cylindrical shells subjected to combined loads", Mater. Des. 182, 108035. https://doi.org/10.1016/j.matdes.2019.108035.