DOI QR코드

DOI QR Code

Influence of interfacial adhesive on the failure mechanisms of truss core sandwich panels under in-plane compression

  • Zarei, Mohammad J. (Faculty of Engineering, Yasouj University) ;
  • Hatami, Shahabeddin (Faculty of Engineering, Yasouj University) ;
  • Gholami, Mohammad (Faculty of Engineering, Yasouj University)
  • Received : 2022.03.12
  • Accepted : 2022.07.26
  • Published : 2022.08.25

Abstract

Sandwich structures with the superior mechanical properties such as high stiffness and strength-to-weight ratio, good thermal insulation, and high energy absorption capacity are used today in aerospace, automotive, marine, and civil engineering industries. These structures are composed of moderately stiff, thin face sheets that withstand the majority of transverse and in-plane loads, separated by a thick, lightweight core that resists shear forces. In this research, the finite element technique is used to simulate a sandwich panel with a truss core under axial compressive stress using ABAQUS software. A review of past experimental studies shows that the bondline between the core and face sheets plays a vital role in the critical failure load. Therefore, this modeling analyzes the damage initiation modes and debonding between face sheet and core by cohesive surface contact with traction-separation model. According to the results obtained from the modeling, it can be observed that the adhesive stiffness has a significant influence on the critical failure load of the specimens. To achieve the full strength of the structure as a continuum, a lower limit is obtained for the adhesive stiffness. By providing this limit stiffness between the core and the panel face sheets, sudden failure of the structure can be prevented.

Keywords

References

  1. Akhmet, G. and Yu, Y. and Hu, P. and Hou, W. B. and Han, X. (2020), "Analysis of the performance of adhesively bonded corrugated core sandwich structures using cohesive zone method", J. Sandwich Struct. Mater., 22(1), 104-124. http://dx.doi.org/10.1177/1099636217732530.
  2. Anandan, S. and Nagarajan, S. and Bheemreddy, V. and Chandrashekhara, K. and Pfitzinger, D. and Phan, N. (2014), "Performance evaluation of out-of-autoclave sandwich structures with K-COR and Nomex core", J. Multifunct Compos, 2(1), 71-77. http://dx.doi.org/10.12783/issn.2168-4286/2.1/Anandan.
  3. Azandariani, M.G, Azandariani, A.G., and Abdolmaleki, H. (2020), "Cyclic behavior of an energy dissipation system with steel dual-ring dampers (SDRDs)", J. Constr. Steel Res., 172, 106145. http://dx.doi.org/10.1016/j.jcsr.2020.106145.
  4. Azandariani, M. G., Ghanbari-Ghazijahani, T., Mohebkhah, A. and Classen, M. (2021), "Concrete-and timber-filled tubes under axial compression-Numerical and theoretical study", J. Build. Eng., 44, 103231. http://dx.doi.org/10.1016/j.jobe.2021.103231.
  5. Azandariani, M.G., Gholhaki, M. and Kafi, M.A. (2021), "Hysteresis finite element model for evaluation of cyclic behavior and performance of steel plate shear walls (SPSWs)", Structures, 29, 30-47. http://dx.doi.org/10.1016/j.istruc.2020.11.009.
  6. Azandariani, M.G., Kafi, M.A. and Gholhaki, M. (2021), "Innovative hybrid linked-column steel plate shear wall (HLCS) system: Numerical and analytical approaches", J. Build. Eng., 43, 102844. http://dx.doi.org/10.1016/j.jobe.2021.102844.
  7. Azandariani, A.G., Gholhaki, M. and Azandariani, M.G. (2022), "Assessment of damage index and seismic performance of steel plate shear wall (SPSW) system", J. Construct. Steel Res., 191, 107157. http://dx.doi.org/10.1016/j.jcsr.2022.107157.
  8. Benzeggagh, M.L. and Kenane, M. (1996), "Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus", Compos. Sci. Technol., 56(4), 439-449. http://dx.doi.org/10.1016/0266-3538(96)00005-X.
  9. Birman, V. and Kardomateas, G.A. (2018), "Review of current trends in research and applications of sandwich structures", Compos. Part B Eng., 142, 221-240. http://dx.doi.org/10.1016/j.compositesb.2018.01.027.
  10. Camanho, P.P. and Davila, C.G. (2002), "Mixed-mode decohesion finite elements for the simulation of delamination in composite materials", NASA/TM-2002-211737; NASA Langley Research Center Hampton, VA, United States.
  11. Chen, J.W. and Liu, W. and Su, X.Y. (2011), "Vibration and buckling of truss core sandwich plates on an elastic foundation subjected to biaxial in-plane loads", Comput. Mater. Continua, 24(2), 163-182. http://dx.doi.org/10.3970/cmc.2011.024.163.
  12. Farrokhabadi, A. and Taghizadeh, S.A. and Madadi, H. and Norouzi H. and Ataei, A. (2020), "Experimental and numerical analysis of novel multi-layer sandwich panels under three-point bending load", Compos. Struct., 250, 112631. http://dx.doi.org/10.1016/j.compstruct.2020.112631.
  13. Feng, L.J. and Wu, L.Z. and Yu, G.C. (2016), "An hourglass truss lattice structure and it is mechanical performances", Materials Design, 99, 581-591. http://dx.doi.org/10.1016/j.matdes.2016.03.100.
  14. Hatami, S., Rahmani, A., Parvaneh, A. and Ronagh, H. R. (2014). "A parametric study on seismic characteristics of cold-formed steel shear walls by finite element modeling", Adv. Steel Construct., 10(1), 53-71. https://doi.org/10.18057/IJASC.2014.10.1.4.
  15. Hatami, S., Gholikhani, M., Farahbod, F. and Davani, M. R. (2017). "A numerical study on response modification factor of CFS walls sheathed with steel sheets", J. Eng. Sci. Technol. Rev., 10(2), 191-202.
  16. Hong, J. and Zhang, S. and Fang, H. and Xu, X. and Xie, H. and Wang, Y. (2021), "Structural performance of textile reinforced concrete sandwich panels under axial and transverse load", Rev. Adv. Mater. Sci., 60(1), 64-79. http://dx.doi.org/10.1515/rams2021-0015.
  17. Hu, J. and Liu, A. and Zhu, S. and Zhang, H. and Wang, B. and Zheng, H. and Zhou, Z. (2020), "Novel panel-core connection process and impact behaviors of CF/PEEK thermoplastic composite sandwich structures with truss cores", Compos. Struct., 251, 112659. http://dx.doi.org/10.1016/j.compstruct.2020.112659.
  18. Hu, Y. and Li, W. and Fan, H. and Sun, F. and Ouyang, J. and Qu, Z. and Kuang, N. (2017), "Experimental investigations on the failures of woven textile sandwich panels", J. Thermo. Compos. Mater., 30(2), 196-224. http://dx.doi.org/10.1177/0892705715598357.
  19. Huang, W. and Fan, Z. and Zhang, W. and Liu, J. and Zhou, W. (2019), "Impulsive response of composite sandwich structure with tetrahedral truss core", Compos. Sci. Technol., 176, 17-28. http://dx.doi.org/10.1016/j.compscitech.2019.03.020.
  20. Hyun, S. and Karlsson, A.M. and Torquato, S. and Evans, A. G. (2003), "Simulated Properties of Kagome and Tetragonal Truss Core Panels", J. Solids Struct., 40(25), 6989-6998. http://dx.doi.org/10.1016/S0020-7683(03)00350-0.
  21. Javidan, M.M., and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. http://dx.doi.org/10.12989/scs.2020.37.3.259.
  22. Kazemi, M.J., Hatami, S., Zare, A. and Parvaneh, A. (2019), "Numerical study on racking behavior of light steel frames with K-shaped bracing", World J. Eng., 16(2), 238-247. https://doi.org/10.1108/WJE-12-2017-0407.
  23. Kim, H. and Cho, B.H. and Hur, H.K. and Kang, K.J. (2015), "A composite sandwich panel integrally woven with truss core", Mater. Design (1980-2015), 65, 231-242. http://dx.doi.org/10.1016/j.matdes.2014.08.064.
  24. Li, M. and Wu, L. and Ma, L. and Wang, B. and Guan, Z. (2011), "Structural response of all-composite pyramidal truss core sandwich columns in end compression", Compos. Struct., 93(8), 1964-1972. http://dx.doi.org/10.1016/j.compstruct.2011.03.004.
  25. Li, S. and Yang, J.S. and Wu, L.Z. and Yu, G.C. and Feng, L.J. (2019), "Vibration behavior of metallic sandwich panels with hourglass truss cores", Marine Struct., 63, 84-98. http://dx.doi.org/10.1016/j.marstruc.2018.09.004.
  26. Liu, F. and Wang, L. and Jin, D. and Liu, X. and Lu, P. (2019), "Equivalent micropolar beam model for spatial vibration analysis of planar repetitive truss structure with flexible joints", J. Mech. Sci., 165, 105202. http://dx.doi.org/10.1016/j.ijmecsci.2019.105202.
  27. Mohammadi, M., Kafi, M.A., Kheyroddin, A. and Ronagh, H.R. (2019), "Experimental and numerical investigation of an innovative buckling-restrained fuse under cyclic loading", Structure, 22, 186-199. http://dx.doi.org/10.1016/j.istruc.2019.07.014.
  28. Oh, K. and Park, H. (2021), "Study on thermal properties of epoxy-adhesive film for aluminum sandwich composite structure", J. Aeronautical Space Sci., 22(1), 79-83. http://dx.doi.org/10.1007/s42405-020-00315-1.
  29. Qi, G. and Ji, B. and Ma, L. (2019), "Mechanical response of pyramidal lattice truss core sandwich structures by additive manufacturing", Mech. Adv. Mater. Struct., 26(15), 1298-1306. http://dx.doi.org/10.1080/15376494.2018.1432805.
  30. Saadatfard, H., Niknejad, A., Liaghat, G. and Hatami, S. (2019). "A novel general theory for bending and plastic hinge line phenomena in indentation and flattening processes", ThinWalled Struct., 136, 150-161. https://doi.org/10.1016/j.tws.2018.12.007.
  31. Shishesaz, M. and Dehghani, M. and Hasanvand, M. (2020), "Investigation of mechanical properties and mode i cohesive failure of the adhesive layer in sandwich beams with a cellular core", J. Appl. Mech. Tehcnical Phys., 61(1), 124-130. http://dx.doi.org/10.1134/S0021894420010137.
  32. Simulia, D. ABAQUS Version 2021HF5 (6.21-6) (2021), Documentation USA, Dassault Systemes Simulia Corporation, Johnston, RI, USA.
  33. Sun, L. and Tie, Y. and Hou, Y. and Lu, X. and Li, C. (2020), "Prediction of failure behavior of adhesively bonded CFRP scarf joints using a cohesive zone model", Eng. Fracture Mech., 228, 106897. http://dx.doi.org/10.1016/j.engfracmech.2020.106897.
  34. Turon, A. and Davila, C.G. and Camanho, P.P. and Costa, J. (2007), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fracture Mech., 74(10), 1665-1682. http://dx.doi.org/10.1016/j.engfracmech.2006.08.025.
  35. Vaziri, E., Gholami, M. and Azandariani, M.G. (2021), "The wallframe interaction effect in corrugated steel plate shear walls systems", J. Steel Struct., 21, 1680-1697. https://doi.org/10.1007/s13296-021-00529-3.
  36. Wesolowski, M. and Ruchwa, M. and Skukis, E. and Kovalovs, A. (2020), "Numerical and experimental extraction of dynamic parameters for pyramidal truss core sandwich beams with laminated face sheets", Materials, 13(22), 5199. http://dx.doi.org/10.3390/ma13225199.
  37. Wu, Q. and Gao, Y. and Wei, X. and Mousanezhad, D. and Ma, L. and Vaziri, A. and Xiong, J. (2018), "Mechanical properties and failure mechanisms of sandwich panels with ultra-lightweight three-dimensional hierarchical lattice cores", J. Solids Struct., 132, 171-187. http://dx.doi.org/10.1016/j.ijsolstr.2017.09.024.
  38. Xiong, J. and Ma, L. and Wu, L. and Liu, J. and Vaziri, A. (2011), "Mechanical behavior and failure of composite pyramidal truss core sandwich columns", Compos. Part B Eng., 42(4), 938-945. http://dx.doi.org/10.1016/j.compositesb.2010.12.021.
  39. Yan, S. and Zeng, T. and Fang, D.N. and Yang, W. (2010), "Shear behavior of carbon/epoxy pyramidal truss sandwich panels", The 1st International Conference on Advanced Polymer and Polymer Composites, Harbin, China, July.
  40. Yang, D. and Fan, C. and Hu, Y. (2021), "Optimization and mechanical properties of fabricated 2D wood pyramid lattice sandwich structure", Forests, 12(5), 607. http://dx.doi.org/10.3390/f12050607.
  41. Yang, W. and Xiong, J. and Feng, L.J. and Pei, C. and Wu, L.Z. (2020), "Fabrication and mechanical properties of threedimensional enhanced lattice truss sandwich structures", J. Sandwich Struct. Mater., 22, 1594-1611. http://dx.doi.org/10.1177/1099636218789602.
  42. Yuan, Z. and Tu, Y. and Yuan, T. and Zhang, Y. and Huang, Y. (2021), "Effect of post-brazing heat treatment on the corrosion mechanism of sandwich multi-layered aluminum sheets", Vacuum, 183, 109781. http://dx.doi.org/10.1016/j.vacuum.2020.109781.
  43. Zeng, T. and Fang, D.N. and Yan, S. (2010), "Compressive properties of carbon epoxy composite sandwich panels with pyramidal truss core", Joint-Symposium on Mechanics of Advanced Materials and Structures, Harbin, China, August.
  44. Zhang, Z.J. and Zhang, Q.C. and Shi, X.B. and Zhang, W. J. and Jin, F. (2018), "Effects of adhesive parameters on out-of-plane compression and compression fatigue response of adhesively bonded sandwiches with pyramidal core", Compos. Struct., 206, 131-139. http://dx.doi.org/10.1016/j.compstruct.2018.08.004.
  45. Zoesmar, N., Fuchs, D. and Taha, I. (2022), "Treatment of additively manufactured AlSi10Mg surfaces for improved bonding with fiber reinforced composites for sandwich applications", J. Sandwich Struct. Mater., 24(2), 1152-1168. http://dx.doi.org/10.1177/10996362211035431.