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1. Introduction

One of the differential equations that can convert nonlinear equations into
linear equations is the Bernoulli differential equation. A Bernoulli differential
equation is an equation of the form

dy

dx
+ p(x)y − g(x)ym = 0, (1.1)

where m is any real number, p(x) and g(x) are continuous functions on the
interval. If m = 0 or m = 1, the above equation is linear, and if not, the
equation is nonlinear. The Bernoulli differential equation can be reduced to a
linear differential equation with substitution u = y1−m. Then for u we obtain
a linear equation du

dx + (1 −m)p(x)u = (1 −m)g(x). This Bernoulli differential
equation has many application to problems modeled by nonlinear differential
equations, equations about the population expressed in logistic equations or
Verhulst equations, physics and so on.

If m = 0 in (1.1), then the Bernoulli differential equation has the solution
which is a generating function of the tangent polynomials. The equation is as
follows.

Received July 16, 2022. Revised August 29, 2022. Accepted September 1, 2022.
© 2022 KSCAM.

1117



1118 Jung Yoog Kang

d

dx
Tn(x) +

1

2
Tn(x) +

1

2
T0(x)− xn = 0 (1.2)

where Tn(x) is the tangent polynomials, see [8].
The tangent numbers and polynomials can be expressed as

∞∑
n=0

Tn
tn

n!
=

2

e2t + 1
,

∞∑
n=0

Tn(x)
tn

n!
=

2

e2t + 1
etx, respectively.

Based on the concept above, we can consider the q-Bernoulli differential equa-
tion of the first order Dqy + p(x)y − g(x)ym = 0 in q-calculus. When m = 0
in (1.1), the q-tangent polynomials is a solution of the following q-differential
equation of the first order.

D(1)
q,xTn,q(x) + 2−1(T0,q(x) + Tn,q(x))− xn = 0, (1.3)

where Dq is the derivative in q-calculus and Tn,q(x) is the q-tangent polynomials.
For eq(2t) ̸= −1, the q-tangent numbers and polynomials can be expressed as
∞∑
n=0

Tn,q
tn

[n]q!
=

2

eq(2t) + 1
,

∞∑
n=0

Tn,q(x)
tn

[n]q!
=

2

eq(2t) + 1
eq(tx), respectively.

We note that (1.3) becomes (1.2) when q → 1.
The aim of this paper is to find out the form of differential equations of higher

order for q-tangent polynomials through the equation in (1.3). To obtain the
above aim, we briefly review several concepts of q-calculus which we need for
this paper.

Let n, q ∈ R with q ̸= 1. The number

[n]q =
1− qn

1− q

is called q-number, see [1], [2]. We note that limq→1[n]q = n. In particular, for
k ∈ Z, [k]q is called q-integer.

The q-Gaussian binomial coefficients are defined by[
m
r

]
q

=
[m]q!

[m− r]q![r]q!
,

where m and r are non-negative integers, see [5]. For r = 0, the value is 1
since the numerator and the denominator are both empty products. One notes
[n]q! = [n]q[n− 1]q · · · [2]q[1]q and [0]q! = 1.

Definition 1.1. Let z be any complex numbers with |z| < 1. Two forms of
q-exponential functions can be expressed as

eq(z) =

∞∑
n=0

zn

[n]q!
, Eq(z) =

∞∑
n=0

q(
n
2)

zn

[n]q!
.

We note that limq→1 eq(z) = ez, see [1], [4].
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Theorem 1.2. From Definition 1.1, we note that
(i) eq(x)eq(y) = eq(x+ y), if yx = qxy.

(ii) eq(x)Eq(−x) = 1.

(iii) eq−1(x) = Eq(x).

From the result of using the two concepts of q-exponential functions, new
types of Bernoulli, Euler, and Genocchi polynomials are appeared and many
mathematicians have studied their properties and identities, see [3], [6]-[9]. By
using computer, this topic is studied in various research way. The generating
functions of q-Euler polynomials used in this paper can be confirmed in defini-
tions 1.3.

Definition 1.3. The generating function for the q-Euler numbers and polyno-
mials are

∞∑
n=0

En,q
tn

[n]q!
=

2

eq(t) + 1
,

∞∑
n=0

En,q(x)
tn

[n]q!
=

2

eq(t) + 1
eq(tx), respectively.

Let q → 1 in Definition 1.3. Then, we can find the Euler numbers and
polynomials as

∞∑
n=0

En
tn

n!
=

2

et + 1
,

∞∑
n=0

En(x)
tn

n!
=

2

et + 1
etx, |t| < π.

Definition 1.4. The q-derivative of a function f with respect to x is defined by

Dq,xf(x) := Dqf(x) =
f(x)− f(qx)

(1− q)x
, for x ̸= 0,

and Dqf(0) = f ′(0).

We can prove that f is differentiable at zero, and it is clear that Dqx
n =

[n]qx
n−1. From Definition 1.4, we can see some formulae for q-derivative.

Theorem 1.5. From Definition 1.4, we note that
(i) Dq(f(x)g(x)) = q(x)Dqf(x) + f(qx)Dqg(x)

= f(x)Dqg(x) + g(qx)Dqf(x),

(ii) Dq

(
f(x)

g(x)

)
=
g(qx)Dqf(x)− f(qx)Dqg(x)

g(x)g(qx)

=
g(x)Dqf(x)− f(x)Dqg(x)

g(x)g(qx)
,

(iii) for any constants a and b,
Dq(af(x) + bg(x)) = aDqf(x) + bDqg(x).

Based on the previous content, our purpose is to find various q-differential
equations of higher order that contain q-tangent polynomials as solution of the q-
differential equation of higher order. In Section 2, we find q-differential equations
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of higher order that has q-tangent polynomials as the solution and check its
associated symmetric properties.

2. Main results

In this section, we find some basic q-differential equations of higher order of
q-tangent polynomials using q-tangent numbers and polynomials. Moreover, we
introduce a special q-differential equation of higher order which is related to a
symmetric property for q-tangent polynomials.

Lemma 2.1. For 0 < q < 1, we have

(i) Tn−k,q(x) =
[n− k]q!

[n]q!
D(k)
q,xTn,q(x),

(ii) Tn−k,q(q
−1x) =

qk[n− k]q!

[n]q!
D(k)
q,xTn,q(q

−1x).

Proof. (i) We will show the proof using mathematical induction. Applying
q-derivative in q-tangent polynomials, we find

D(1)
q,x

∞∑
n=0

Tn,q(x)
tn

[n]q!
=

2

eq(2t) + 1
D(1)
q,xeq(tx) =

∞∑
n=0

[n]qTn−1,q(x)
tn

[n]q!
. (2.1)

From the Equation (2.1), we obtain a relation such as

D(1)
q,xTn,q(x) = [n]qTn−1,q(x).

In a similar method, we have

D(2)
q,xTn,q(x) = [n]q[n− 1]qTn−2,q(x).

Therefore, we can find a relation as

D(k)
q,xTn,q(x) = [n]q[n− 1]q · · · [n− (k − 1)]qTn−k,q(x),

which is the desired result.
(ii) We omit the proof of Lemma 2.1.(ii) because we can derive the required
result if we use a similar method as the proof in Lemma 2.1.(i).

□

Theorem 2.2. The q-tangent polynomials Tn,q(x) is a solution of the following
q-differential equation of higher order.

2n−1

[n]q!
D(n)
q,xTn,q(x) +

2n−2

[n− 1]q!
D(n−1)
q,x Tn,q(x) +

2n−3

[n− 2]q!
D(n−2)
q,x Tn,q(x) + · · ·

+
23

[4]q!
D(4)
q,xTn,q(x) +

22

[3]q!
D(3)
q,xTn,q(x) +

2

[2]q!
D(2)
q,xTn,q(x) +D(1)

q,xTn,q(x)

+ 2−1(T0,q(x) + Tn,q(x))− xn = 0.
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Proof. Using q-derivative in q-tangent polynomials, we have

∞∑
n=0

Tn,q(x)
tn

[n]q!

( ∞∑
n=0

2n
tn

[n]q!
+ 1

)
= 2

∞∑
n=0

xn
tn

[n]q!
. (2.2)

From Equation (2.2), we have

n∑
k=0

[
n
k

]
q

2kTn−k,q(x) = 2xn − Tn,q(x). (2.3)

Using Lemma 2.1.(i) in the left-hand side of (2.3), we obtain

n∑
k=0

2k−1

[k]q!
D(k)
q,xTn,q(x) = xn − 2−1Tn,q(x). (2.4)

From Equation (2.4), we complete the required result. □

Corollary 2.3. When q → 1 in Theorem 2.2, the tangent polynomials Tn(x) is
a solution of the following difference equation of higher order.

2n−1

n!

dn

dxn
Tn(x) +

2n−2

(n− 1)!

dn−1

dxn−1
Tn(x) +

2n−3

(n− 2)!

dn−2

dxn−2
Tn(x) + · · ·

+
22

3!

d3

dx3
Tn(x) +

2

2!

d2

dx2
Tn(x) +

d

dx
Tn(x) + 2−1(T0(x) + Tn(x))− xn = 0,

where Tn(x) is the tangent polynomials.

Theorem 2.4. The q-tangent polynomials Tn,q(x) is a solution of the following
q-differential equation of higher order.

n−1∑
k=0

2n−k−1Tk,q
[n− k − 1]q![k]q!

D(n−1)
q,x Tn−1,q(x) +

n−2∑
k=0

2n−k−2qTk,q
[n− k − 2]q![k]q!

D(n−2)
q,x Tn−1,q(x) + · · ·

+

2∑
k=0

22−kqn−3Tk,q
[2− k]q![k]q!

D(2)
q,xTn−1,q(x) +

1∑
k=0

21−kqn−2Tk,q
[1− k]q![k]q!

D(1)
q,xTn−1,q(x)

+ (qn−1T0,q − qnx)Tn−1,q(x) + Tn,q(qx) = 0.
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Proof. We consider q-derivative after substituting qx instead of x in the
generating function of q-tangent polynomials. Then, we have

Dq,t

∞∑
n=0

Tn,q(qx)
tn

[n]q!

= eq(qtx)Dq,t

(
2

eq(2t) + 1

)
+

2

eq(2qt) + 1
Dq,teq(qtx)

=

∞∑
n=0

qnTn,q(x)
tn

[n]q!

(
qx−

∞∑
n=0

(
n∑
k=0

[
n
k

]
q

2n−kTk,q

)
tn

[n]q!

)

=

∞∑
n=0

(
qn+1xTn,q(x)−

n∑
l=0

l∑
k=0

[
n
l

]
q

[
l
k

]
q

2l−kqn−lTk,qTn−l,q(x)

)
tn

[n]q!
.

(2.5)

To make calculations easier, we multiply t in Equation (2.5). Then, we obtain

tDq,t

∞∑
n=0

Tn,q(qx)
tn

[n]q!
=

∞∑
n=0

[n]qq
nxTn−1,q(x)

tn

[n]q!

−
∞∑
n=0

[n]q

(
n−1∑
l=0

l∑
k=0

[
n− 1
l

]
q

[
l
k

]
q

2l−kqn−l−1Tk,qTn−l−1,q(x)

)
tn

[n]q!
.

(2.6)

On the other hand, we can obtain the following equation from the generating
function of q-tangent polynomials such as

tDq,t

∞∑
n=0

Tn,q(qx)
tn

[n]q!
=

∞∑
n=0

[n]qTn,q(qx)
tn

[n]q!
. (2.7)

By comparing the coefficients of Equations (2.6) and (2.7), we have
n−1∑
l=0

l∑
k=0

[
n− 1
l

]
q

[
l
k

]
q

2l−kqn−l−1Tk,qTn−l−1,q(x)

= qnxTn−1,q(x)− Tn,q(qx).

(2.8)

In Lemma 2.2.(i), we consider the following equation.

Tn−k−1,q(x) =
[n− k − 1]q!

[n− 1]q!
D(k)
q,xTn−1,q(x). (2.9)

Substituting the right hand side of (2.9) to the left hand side of (2.8), we find
n−1∑
l=0

l∑
k=0

[
n− 1
l

]
q

[
l
k

]
q

2l−kqn−l−1Tk,qTn−l−1,q(x)

=

n−1∑
l=0

l∑
k=0

2l−kqn−l−1Tk,q
[l − k]q![k]q!

D(l)
q,xTn−1,q(x).

(2.10)

Combining Equations (2.8) and (2.10), we find the required result. □
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Corollary 2.5. When q → 1 in Theorem 2.4, a solution of the following differ-
ence equation of higher order

n−1∑
k=0

2n−k−1Tk
(n− k − 1)!k!

dn−1

dxn−1
Tn−1(x) +

n−2∑
k=0

2n−k−1Tk
(n− k − 2)!k!

dn−2

dxn−2
Tn−1(x) + · · ·

+

2∑
k=0

22−kTk
(2− k)!k!

d2

dx2
Tn−1(x) +

1∑
k=0

21−kTk
(1− k)!k!

d

dx
Tn−1(x)

+ (T0 − x)Tn−1(x) + Tn(x) = 0,

where Tn(x) is the tangent polynomials .

Theorem 2.6. The q-tangent polynomials Tn,q(x) satisfies a following q-differential
equation of higher order.

n−1∑
k=0

2n−1Ek,q
[n− k − 1]q![k]q!

D(n−1)
q,x Tn−1,q(x) +

n−2∑
k=0

2n−2qEk,q
[n− k − 2]q![k]q!

D(n−2)
q,x Tn−1,q(x) + · · ·

+

2∑
k=0

22qn−3Ek,q
[2− k]q![k]q!

D(2)
q,xTn−1,q(x) +

1∑
k=0

2qn−2Ek,q
[1− k]q![k]q!

D(1)
q,xTn−1,q(x)

+ (q−1E0,q − x)qnTn−1,q(x) + Tn,q(qx) = 0,

where En,q is the q-Euler numbers.

Proof. To find a q-differential equation of higher order which contained the
q-Euler numbers, we can transform the Equation (2.5) as

Dq,t

∞∑
n=0

Tn,q(qx)
tn

[n]q!

=

∞∑
n=0

qnTn,q(x)
tn

[n]q!

(
qx−

∞∑
n=0

2nEn,q
tn

[n]q!

∞∑
n=0

2n
tn

[n]q!

)

=

∞∑
n=0

(
qn+1xTn,q(x)−

n∑
l=0

l∑
k=0

[
n
l

]
q

[
l
k

]
q

2lqn−lEk,qTn−l,q(x)

)
tn

[n]q!
.

Therefore, we have

n−1∑
l=0

l∑
k=0

2lqn−l−1Ek,q
[l − k]q![k]q!

D(l)
q,xTn−1,q(x)− qnxTn−1,q(x) + Tn,q(qx) = 0,

which is the desired result. □
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Corollary 2.7. Let q → 1 in Theorem 2.6. Then, the tangent polynomials
Tn(x) satisfies a following difference equation of higher order.

n−1∑
k=0

2n−1Ek
(n− k − 1)!k!

dn−1

dxn−1
Tn−1(x) +

n−2∑
k=0

2n−2qEk
(n− k − 2)!k!

dn−2

dxn−2
Tn−1(x) + · · ·

+

2∑
k=0

22qn−3Ek
(2− k)!k!

d2

dx2
Tn−1(x) +

1∑
k=0

2qn−2Ek
(1− k)!k!

d

dx
Tn−1(x)

+ (E0 − x)Tn−1(x) + Tn(x) = 0,

where En is the Euler numbers.

Theorem 2.8. The q-tangent polynomials Tn,q(x) is a solution of following
q-differential equation of higher order.

Tn−1,q(2)

[n− 1]q!
D(n−1)
q,x Tn−1,q(x) +

qTn−2,q(2)

[n− 2]q!
D(n−2)
q,x Tn−1,q(x) + · · ·

+
qn−4T3,q(2)

[3]q!
D(3)
q,xTn−1,q(x) +

qn−3T2,q(2)

[2]q!
D(2)
q,xTn−1,q(x)

+ qn−2T1,q(2)D
(1)
q,xTn−1,q(x) + (q−1T0,q(2)− x)qnTn−1,q(x) + Tn,q(qx) = 0.

Proof. To use q-tangent polynomials as coefficients in q-differential equation
of higher order, we can find the other form from equation (2.5):

Dq,t

∞∑
n=0

Tn,q(qx)
tn

[n]q!

=

∞∑
n=0

(
qn+1xTn,q(x)−

n∑
k=0

[
n
k

]
q

qn−kTk,q(2)Tn−k,q(x)

)
tn

[n]q!
.

(2.11)

Multiplying t in Equation (2.11), we have

tDq,t

∞∑
n=0

Tn,q(qx)
tn

[n]q!
=

∞∑
n=0

[n]qq
nxTn−1,q(q

−1x)
tn

[n]q!

−
∞∑
n=0

[n]q

n−1∑
k=0

[
n− 1
k

]
q

qn−k−1Tk,q(2)Tn−k−1,q(x)
tn

[n]q!
.

(2.12)

Comparing the coefficients of Equations (2.5) and (2.12), we obtain

n−1∑
k=0

[
n− 1
k

]
q

qn−k−1Tk,q(2)Tn−k−1,q(x) = qnxTn−1,q(x)− Tn,q(qx). (2.13)
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Applying a relation between Dn
q,xTn,q(x) and Tn,q(x) in the left-hand side of

(2.13), we obtain
n−1∑
k=0

[
n− 1
k

]
q

qn−k−1Tk,q(2)Tn−k−1,q(x)

=

n−1∑
k=0

qn−k−1Tk,q(2)

[k]q!
D(k)
q,xTn−1,q(x).

(2.14)

We can find a equation combining the right hand side of (2.13) and (2.14),
which shows the required result. □

Corollary 2.9. The tangent polynomials Tn(x) when q → 1 in Theorem 2.8 is
a solution of following differential equation of higher order.

Tn−1(2)

(n− 1)!

dn−1

dxn−1
Tn−1(x) +

Tn−2(2)

(n− 2)!

dn−2

dxn−2
Tn−1(x) + · · ·+ T3(2)

3!

d3

dx3
Tn−1(x)

+
T2(2)

2!

d2

dx2
Tn−1(x) + T1(2)

d

dx
Tn−1(x) + (T0(2)− x)Tn−1(x) + Tn(x) = 0.

Theorem 2.10. Let a, b ̸= 0 and 0 < q < 1. Then, we find a general symmetric
property of q-differential equation of higher order:

Tn,q(b
−1y)

[n]q!
D(n)
q,xTn,q(a

−1x) +
b−1Tn−1,q(b

−1y)

[n− 1]q!
D(n−1)
q,x Tn,q(a

−1x) + · · ·

+ b1−nT1,q(b
−1y)D(1)

q,xTn,q(a
−1x) + b−nT0,q(b

−1y)Tn,q(a
−1x)

=
Tn,q(a

−1y)

[n]q!
D(n)
q,xTn,q(b

−1x) +
a−1Tn−1,q(a

−1y)

[n− 1]q!
D(n−1)
q,x Tn,q(b

−1x) + · · ·

+ a1−nT1,q(a
−1y)D(1)

q,xTn,q(b
−1x) + a−nT0,q(a

−1y)Tn,q(b
−1x).

Proof. To find q-differential equation of higher order using a symmetric prop-
erty of q-tangent polynomials, we can construct form A such as

A :=
4eq(tx)eq(ty)

(eq(2at) + 1)(eq(2bt) + 1)
.

Using the generating function of q-tangent polynomials and Cauchy products,
form A is transformed as

A =

∞∑
n=0

(
n∑
k=0

[
n
k

]
q

an−kbkTk,q(b
−1y)Tn−k,q(a

−1x)

)
tn

[n]q!
, (2.15)

and

A =

∞∑
n=0

(
n∑
k=0

[
n
k

]
q

akbn−kTk,q(a
−1y)Tn−k,q(b

−1x)

)
tn

[n]q!
. (2.16)
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From (2.15) and (2.16), we find a symmetric property such as
n∑
k=0

[
n
k

]
q

an−kbkTk,q(b
−1y)Tn−k,q(a

−1x)

=

n∑
k=0

[
n
k

]
q

akbn−kTk,q(a
−1y)Tn−k,q(b

−1x).

(2.17)

Applying a relation betweenD(n)
q,xTn,q(x) and Tn,q(x) in Equation (2.17), we have

n∑
k=0

bk−nTk,q(b
−1y)

[k]q!
D(k)
q,xTn,q(a

−1x) =

n∑
k=0

ak−nTk,q(a
−1y)

[k]q!
D(k)
q,xTn,q(b

−1x).

From the above equation, we express the required result and complete the proof
of Theorem 2.10. □
Corollary 2.11. Setting a = 1 in Theorem 2.10, one holds

Tn,q(b
−1y)

[n]q!
D(n)
q,xTn,q(x) +

b−1Tn−1,q(b
−1y)

[n− 1]q!
D(n−1)
q,x Tn,q(x) + · · ·

+ b1−nT1,q(b
−1y)D(1)

q,xTn,q(x) + b−nT0,q(b
−1y)Tn,q(x)

=
Tn,q(y)

[n]q!
D(n)
q,xTn,q(b

−1x) +
Tn−1,q(y)

[n− 1]q!
D(n−1)
q,x Tn,q(b

−1x) + · · ·

+ T1,q(y)D
(1)
q,xTn,q(b

−1x) + T0,q(y)Tn,q(b
−1x).

Corollary 2.12. Let a, b ̸= 0, 0 < q < 1 and q → 1 in Theorem 2.10. Then,
the following holds

Tn(b
−1y)

n!

dn

dxn
Tn(a

−1x) +
b−1Tn−1(b

−1y)

(n− 1)!

dn−1

dxn−1
Tn(a

−1x) + · · ·

+ b1−nT1(b
−1y)

d

dx
Tn(a

−1x) + b−nT0(b
−1y)Tn,q(a

−1x)

=
Tn(a

−1y)

n!

dn

dxn
Tn(b

−1x) +
a−1Tn−1(a

−1y)

(n− 1)!

dn−1

dxn−1
Tn(b

−1x) + · · ·

+ a1−nT1(a
−1y)

d

dx
Tn(b

−1x) + a−nT0(a
−1y)Tn(b

−1x),

where Tn(x) is the tangent polynomials.

Theorem 2.13. Let a, b ̸= 0 and 0 < q < 1. Then, we derive
2nEn,q(2−1a−1x)

[n]q!
D(n)
q,yTn,q(b

−1y) +
2n−1a−1En−1,q(2

−1a−1x)

[n− 1]q!
D(n−1)
q,y Tn,q(b

−1y)

+ · · ·+ 2a1−nE1,q(2−1a−1x)D(1)
q,yTn,q(b

−1y) + a−nE0,q(2−1a−1x)Tn,q(b
−1y)

=
2nEn,q(2−1b−1x)

[n]q!
D(n)
q,yTn,q(a

−1y) +
2n−1b−1En−1,q(2

−1b−1x)

[n− 1]q!
D(n−1)
q,y Tn,q(a

−1y)

+ · · ·+ 2b1−nE1,q(2−1b−1x)D(1)
q,yTn,q(a

−1y) + b−nE0,q(2−1b−1x)Tn,q(a
−1y).
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Proof. To find the other symmetric property of q-differential equation of
higher order containing q-Euler polynomials, we can consider

∞∑
n=0

En,q(2−1x)
tn

[n]q!
=

2

eq(2t) + 1
eq(tx). (2.18)

Using the generating function of q-tangent polynomials, Equation (2.18), and
Cauchy products, form A is transformed as

A =

∞∑
n=0

(
n∑
k=0

[
n
k

]
q

(2a)kbn−kEk,q(2−1a−1x)Tn−k,q(b
−1y)

)
tn

[n]q!
, (2.19)

and

A =

∞∑
n=0

(
n∑
k=0

[
n
k

]
q

(2a)kbn−kEk,q(2−1b−1x)Tn−k,q(a
−1y)

)
tn

[n]q!
. (2.20)

Applying the coefficient comparison method on Equations (2.19) and (2.20), we
find a symmetric property which is related to q-Euler polynomials and q-tangent
polynomials.

n∑
k=0

[
n
k

]
q

(2a)kbn−kEk,q(2−1a−1x)Tn−k,q(b
−1y)

=

n∑
k=0

[
n
k

]
q

(2a)kbn−kEk,q(2−1b−1x)Tn−k,q(a
−1y).

(2.21)

Applying a relation between D
(n)
q,xTn,q(x) and Tn,q(x) in Equation (2.21), we

obtain
n∑
k=0

2kak−nEk,q(2−1a−1x)

[k]q!
D(k)
q,yTn,q(b

−1y)

=

n∑
k=0

2kbk−nEk,q(2−1b−1x)

[k]q!
D(k)
q,yTn,q(a

−1y).

From the above equation, we complete the proof of Theorem 2.13. □

Corollary 2.14. Putting a = 1 in Theorem 2.13, the following holds

2nEn,q(2−1x)

[n]q!
D(n)
q,yTn,q(b

−1y) +
2n−1En−1,q(2

−1x)

[n− 1]q!
D(n−1)
q,y Tn,q(b

−1y)

+ · · ·+ 2E1,q(2−1x)D(1)
q,yTn,q(b

−1y) + E0,q(2−1x)Tn,q(b
−1y)

=
2nEn,q(2−1b−1x)

[n]q!
D(n)
q,yTn,q(y) +

2n−1b−1En−1,q(2
−1b−1x)

[n− 1]q!
D(n−1)
q,y Tn,q(y)

+ · · ·+ 2b1−nE1,q(2−1b−1x)D(1)
q,yTn,q(y) + b−nE0,q(2−1b−1x)Tn,q(y).
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Corollary 2.15. Let a, b ̸= 0, 0 < q < 1 and q → 1 in Theorem 2.13. Then,
one holds

2nEn(2−1a−1x)

n!

dn

dyn
Tn(b

−1y) +
2n−1a−1En−1(2

−1a−1x)

(n− 1)!

dn−1

dyn−1
Tn(b

−1y)

+ · · ·+ 2a1−nE1(2−1a−1x)
d

dy
Tn(b

−1y) + a−nE0(2−1a−1x)Tn(b
−1y)

=
2nEn(2−1b−1x)

n!

dn

dyn
Tn(a

−1y) +
2n−1b−1En−1(2

−1b−1x)

(n− 1)!

dn−1

dyn−1
Tn(a

−1y)

+ · · ·+ 2b1−nE1(2−1b−1x)
d

dy
Tn(a

−1y) + b−nE0(2−1b−1x)Tn(a
−1y),

where En(x) is the Euler polynomials and Tn(x) is the tangent polynomials.

3. Conclusion

We study the q-differential equations of higher order related to the q-tangent
polynomials and confirm the properties. Moreover, the relationship between
q-Euler number and q-differential equations of higher order for q-tangent poly-
nomials was confirmed.
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