ON $A M R$-ALGEBRA ${ }^{\dagger}$

AMR K. AMIN

Abstract

The main objective of this paper is to introduce the notion of $A M R$-algebra and its generalization, and to compare them with other algebras such as $B C K, B C I, B C H, \cdots$, etc. We show moreover that the K-part of $A M R$-algebra is an abelian group, and the weak $A M R$-algebra is also an abelian group and generalizes many known algebras like $B C I$, $B C H$, and G.

AMS Mathematics Subject Classification: 06F25, 06F35.
Key words and phrases : Amr-algebra, weak Amr algebra, algorithms.

1. Introduction

In 1966, Y. Imai and K. Iseki formulated the notions of $B C K$-algebras and $B C I$-algebras first, in [2]. These algebras have been extensively studied since their introduction. In 1983, Q. P. Hu and X. Li introduced the notion of a $B C \mathrm{H}-$ algebra, which is a generalization of the notion of $B C K$ and $B C I$-algebras, and studied a few properties of these algebras. In 1998, Y. B. Jun, E. H. Roh, and H. S. Kim, [3] introduced a new notion, called a BH -algebra, which is a generalization of $B C K, B C I$, and $B C H$-algebras. In 2001, J. Neggers, S. S. Ahn, and H. S. Kim, [7] introduced a new notion, called a Q-algebra, and generalized some theorems discussed in $B C I$ and $B C K$-algebras. In 2002, J. Neggers and H. S. Kim, [8] introduced a new notion, called a B-algebra, and obtained several results. In 2006, C. B. Kim and H. S. Kim, [4] introduced the notion of a $B M$-algebra, which is a specialization of the notion of B-algebras. In 2007, A. Walendziak, [10] introduced a new notion, called a $B F$-algebra, which is a generalization of the B-algebra. In 2008, C. B. Kim and H. S. Kim [5] introduced $B G$-algebra as a generalization of B-algebra. In 2012, C. B. Kim and H. S. Kim, [14] introduced $B O$-algebra as a generalization of $B G$ and $B H$-algebra, Ravi Kumar Bandru and N. Rafi, in [13], introduced the notion of G-algebra, which

[^0]is a generalization of $Q S$ algebras, and Ravi Kumar Bandru, in [12], introduced the notion of $B R K$-algebra, which is a generalization of $B C K, B C I, B C H$, $Q, Q S$, and $B M$-algebras. In 2014, R. A. K. Omar introduced the notion of $R G$-algebra, which is a generalization of $B C I$-algebras [9].

Definition 1.1. [2] A BCI-algebra is a non empty set X endowed with binary operation $*$ and a constant 0 such that for all $x, y, z \in X$, we have
(a) $((x * y) *(x * z)) *(z * y)=0$,
(b) $(x *(x * y)) * y=0$,
(c) $x * x=0$,
(d) $x * y=0$ and $y * x=0 \Rightarrow x=y$.

If a $B C I$-algebra satisfies the identity $0 * x=0$ for all $x \in X$, then it is called a $B C K$-algebra.

Example 1.2. [2] The set $X=\{0,1,2,3,4\}$ with a binary operation $*$ defined by

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	0	0	0
2	2	1	0	0	0
3	3	1	1	0	0
4	4	3	2	1	0

is a $B C K$-algebra.
Definition 1.3. [3] A BH-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * x=0$,
(b) $x * 0=x$,
(c) $x * y=0$ and $y * x=0$ imply $x=y$.

Example 1.4. [3] Let $X=\{0,1,2,3\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2	3
0	0	3	0	2
1	1	0	0	0
2	2	2	0	3
3	3	3	1	0

Then $(X, *, 0)$ is BH-algebra.

Definition 1.5. [7] A Q-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * x=0$,
(b) $x * 0=x$,
(c) $(x * y) * z=(x * z) * y$ for all $x, y, z \in X$..

A Q-algebra is said to be a QS-algebra if it satisfies the additional relation: $(x * y) *(x * z)=z * y$.

Example 1.6. [7] Let $X=\{0,1,2,3\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	0	0	0
3	3	3	3	0

Then $(X, *, 0)$ is Q-algebra.

Definition 1.7. [8] A B-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * x=0$,
(b) $x * 0=x$,
(c) $(x * y) * z=x *(z *(0 * y))$ for all $x, y, z \in X$..

Example 1.8. [8] Let $X=\{0,1,2\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then $(X, *, 0)$ is B-algebra.

Definition 1.9. [4] A BM-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * 0=x$
(b) $(x * y) *(x * z)=z * y$ for all $x, y, z \in X$.

Example 1.10. [4] Let $X=\{0,1,2\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2
0	0	2	1
1	1	0	2
2	2	1	0

Then $(X, *, 0)$ is BM-algebra.

Definition 1.11. [10] A BF-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * x=0$,
(b) $x * 0=x$,
(c) $0 *(x * y)=y * x$ for all $x, y \in X$.

Example 1.12. [10] Let $X=\{0,1,2,3\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2	3
0	0	1	2	3
1	1	0	1	1
2	2	1	0	1
3	3	1	1	0

Then $(X, *, 0)$ is BF-algebra.

Definition 1.13. [5] A BG-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * x=0$,
(b) $x * 0=x$,
(c) $(x * y) *(0 * y)=x$ for all $x, y \in X$..

Example 1.14. [5] Let $X=\{0,1,2,3\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2
0	1	1	2
1	1	0	1
2	2	2	0

Then $(X, *, 0)$ is BG-algebra.

Definition 1.15. [14] A BO-algebra is a non empty set X endowed with binary operation $*$ and a constant 0 such that for all $x, y, z \in X$, we have
(a) $x * x=0$
(b) $x * 0=x$
(c) $x *(y * z)=(x * y) *(0 * z)$ for all $x, y, z \in X$.

Example 1.16. [14] The set $X=\{0,1,2,3,4\}$ with a binary operation $*$ defined by

$*$	0	1	2	3	4
0	0	2	1	4	3
1	1	0	3	2	4
2	2	4	0	3	1
3	3	1	4	0	2
4	4	3	2	1	0

is a $B O$-algebra.
Definition 1.17. [12] A G-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * x=0$
(b) $x *(x * y)=y$ for all $x, y \in X$.

Example 1.18. [12] Let $X=\{0,1,2\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2
0	0	1	2
1	1	0	2
2	2	1	0

Then $(X, *, 0)$ is G-algebra.
Definition 1.19. [12] A BRK-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * 0=x$,
(b) $(x * y) * x=0 * y$, for all $x, y \in X$

Example 1.20. [12] Let $X=\{0,1,2,3\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2
0	0	2	2
1	1	0	0
2	2	0	0

Then $(X, *, 0)$ is BRK-algebra.
Definition 1.21. [9] A RG-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * 0=x$,
(b) $x * y=(x * z) *(y * z) \quad \forall x, y, z \in X$.
(c) $x * y=0$ and $y * x=0$ imply $x=y$.

Example 1.22. [9] Let $X=\{0,1,2,3,4,5\}$ be a set with a binary operation * defined by:

$*$	0	1	2	3	4	5
0	0	5	4	3	2	1
1	1	0	5	4	3	2
2	2	1	0	5	4	3
3	3	2	1	0	5	4
4	4	3	2	1	0	5
5	5	4	3	2	1	0

Then $(X, *, 0)$ is RG-algebra.

Definition 1.23. [11] A Z-algebra is a non empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(a) $x * 0=0$,
(b) $0 * x=x$
(c) $x * x=x$
(d) $x * y=y * x$ when $x \neq 0$ and $y \neq 0$ for all $x, y \in X$.

Example 1.24. [11] Let $X=\{0,1,2,3\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2	3
0	0	1	2	3
1	0	1	0	1
2	0	0	2	2
3	0	1	2	3

Then $(X, *, 0)$ is Z-algebra.

In this paper, we define new extensions of $B C K / B C I$-algebras called $A M R$ algebra and general $A M R$-algebra. We moreover derive some basic algebraic properties of these new algebras. The connection between these new algebras and the other algebras is established and some examples are in addition provided to distinguish them from other algebras. We introduce the so-called K-part of $A M R$-algebra and we prove that it is an abelian group. Furthermore, we show that the weak $A M R$-algebra is a generalization of $B C K, B C I, B C H, Q, B$, $B F, B G, B H, B R K, B O, B M, Q S, R G$, and G-algebras is also abelian group.

2. $A M R$-Algebras

In this section, we introduce the notion of AMR-algebra with some important results related to it and we will give the relation between AMR-algebra and others algebras.

Definition 2.1. An $A M R$-algebra is a nonempty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:
(i) $x * 0=x$
(ii) $(x * y) * z=y *(z * x)$ for all $x, y, z \in X$.

We can define a binary relation $x \leq y$ if and only if $x * y=0$.
Example 2.2. Let $X=\{0,1,2\}$ be a set with a binary operation $*$ defined by:

$*$	0	1	2
0	0	1	2
1	1	2	1
2	2	1	2

Then $(X, *, 0)$ is $A M R$-algebra.
Proposition 2.3. If $(X, *, 0)$ is an $A M R$-algebra, then, for all $x, y, z, t \in X$, the following conditions hold:
(1) $0 * x=x$,
(2) $x * y=y * x$,
(3) $(x * y) *(z * t)=(x * z) *(y * t)$.

Proof. Let us prove (1). From Definition 2.1 (i), we get

$$
0 * x=0 *(x * 0)=(0 * x) * 0
$$

and from (ii), we have

$$
0 * x=(0 * x) * 0=x *(0 * 0)=(0 * 0)=x * 0=x
$$

For (2), it follows from assertion (1) and Definition 2.1 (ii) that

$$
x * y=0 *(x * y)=(y * 0) * x=y * x
$$

Assertion (3) follows finally on using (2) and Definition 2.1 (ii) as

$$
\begin{aligned}
(x * y) *(z * t) & =y *((z * t) * x)=y *(x *(t * z)) \\
& =y *((z * x) * t)=y *((x * z) * t) \\
& =(t * y) *(x * z)=(x * z) *(y * t) .
\end{aligned}
$$

Proposition 2.4. If $(X, *, 0)$ is an $A M R$-algebra and satisfy the identity $x * x=$ 0 then, for any $x, y, z, t \in X$, the following properties hold.
(a) $(x * y) *(x * z)=z * y$.
(b) $(x *(x * y)) *(y * x)=x$.
(c) If $x * y=0$, then $x=y$.
(d) If $x * y=x * z$, then $y=z$.

Proof. Assertions (a), (b), and (c) follows immediately from Definition 2.1 and the identity $x * x=0$ in the following way:
$(x * y) *(x * z)=y *((x * z) * x)=y *(z *(x * x))=y *(z *(x * x))=y *(z * 0)=y * z$.
This proves (a). For (b), we have
$(x *(x * y)) *(y * x)=((y * x) * x) *(y * x)=x *((y * x) *(y * x))=x * 0=x$.
Assertion (c) follows obviously as

$$
x=x * 0=x *(y * x)=(x * x) * y=0 * y=y
$$

Assume that $x * y=x * z$, then $x *(x * y)=x *(x * z)$ and hence $x *(y * x)=x *(z * x)$, by Proposition 2.3 (2). We moreover have $(x * x) * y=(x * x) * z$, by (ii) in Definition 2.1, so $0 * y=0 * z$ because $x * x=0$. Therefore, we deduce that $y=z$ by Proposition 2.3 (1). Assertion (d) is now proved.

There is no relation between $A M R$-algebra and $B C K, B C I, B C H, Q, B$, $B F, B G, B H, B R K, B O, R G, G, Z$, and $Q S$-algebras. In Example 2.2 we have $1 * 1=2$, this shows that $A M R$-algebra is not one of $B C K, B C I, B C H, Q$, $B, B F, B G, B H, B R K, B O, G, Z$, or $Q S$-algebras. Further, neither of these algebras is $A M R$-algebra, this is due to known examples given in the literature. Motivated by the problem, we introduce the following result.

Theorem 2.5. If $(X, *, 0)$ is an $A M R$-algebra and satisfies in addition the identity $x * x=0$, then $(X, *, 0)$ is a $B C I-, B F-, B G-, B H-, B-, B R K-$, $Q-, B O-, B C H-, B M-, Q S-, R G-$, and $G-$ algebra.

Proof. By using Proposition 2.4 (a) and the hypotheses, we have

$$
((x * y) *(x * z)) *(z * y)=(z * y) *(z * y)=0
$$

Furthermore, one can easily check that

$$
(x *(x * y)) * y=((x * 0) *(x * y)) * y=(y * 0) * y=y * y=0 .
$$

From the assumption, we have $x * x=0$.
Now, if $y * x=0=x * y$, we then obtain $x=y$, by using Proposition 2.4 (c).
Finally, if $x * 0=0$, but we know $x * 0=x$, this consequently implies $x=0$. Then $(X, *, 0)$ is a $B C I$-algebra.

3. K-Part of $A M R$-Algebras

In this section, we define the K-part of an $A M R$-algebra. The major property of K-part in $A M R$-algebras is that it is an abelian group. We give a necessary condition for $A M R$-algebra to being an abelian group.

Definition 3.1. Let X be an AMR-algebra. For any subset S of X, we define $K(S)=\{x \in S \mid x * x=0\}$. In particular, if $S=X$, then we say that $K(X)$ is the K-part of an AMR-algebra.

Definition 3.2. A nonempty subset I of an AMR-algebra X is called a subalgebra of X if $x * y \in I$, whenever $x, y \in I$.

Definition 3.3. A nonempty subset I of an AMR-algebra X is called an ideal of X if for any $x, y, z \in X .\left(a_{1}\right) .0 \in I .\left(a_{2}\right) .(x * y) * z \in I,(z * x) \in I$ implies $y \in I$.
$\{0\}$ and X are ideals of X. We call $\{0\}$ and X the zero ideal and the trivial ideal of X, respectively. An ideal I is said to be proper if $I \neq X$. In Example 2.2, the set $(X, *, 0)$ is an $A M R$-algebra and the set $I=\{0,2\}$ is a sub-algebra, of X and $S=\{0,1\}$ is not sub-algebra of X.

Theorem 3.4. Every AMR-algebra $(X, *, 0)$ satisfying the condition $x * x=$ 0 , for all $x \in X$ is an abelian group under the operation $*$.

Proof. By Definition 2.1 and Proposition 2.4, for all $x, y, z \in X$, we have $(x * y) * z=y *(z * x)=(z * x) * y=(x * z) * y=z *(y * x)=z *(x * y)=$ $(y * z) * x=x *(y * z)$.

We also have $x * 0=x$ and $0 * x=x$, which means that 0 is the zero element of X. By $x * x=0$, every element x in X has as its inverse the element x itself. Therefore, $(X, *, 0)$ is an abelian group.

Corollary 3.5. The K-part of an $A M R$-algebra is an abelian group.
Definition 3.6. A weak $A M R$-algebra is a non-empty set X with a constant 0 and a binary operation $*$ satisfying the following axioms:

$$
\begin{aligned}
& 1 x * x=0 \\
& 2 x * 0=x \\
& 3(x * y) * z=y *(z * x) \text { for all } x, y, z \in X
\end{aligned}
$$

Example 3.7. Let $X=\{0,1\}$ be a set with a binary operation $*$ defined by

$*$	0	1
0	0	1
1	1	0

Then $(X, *, 0)$ is weak $A M R$-algebra.
Corollary 3.8. Every weak AMR-algebra is an abelian group.
4. Algorithm for $A M R$-algebras and Algorithm for $A M R$ - ideal in $A M R$-algebras

As an application, we give the following Algorithm.

Input (X : set, $*$: binary operation)
Output(" X is an AMR-algebras or not")
Begin
If $X=\emptyset$ then go to (1.);
End If
If $0 \notin X$ then go to (1.);
End If
Stop:= false;
$i:=1$
While $i \leq X$ and not (Stop) do
If $x_{i} * 0 \neq x_{i}$ then
Stop: = true;
End If
$j:=1$
While $j \leq X$ and not (Stop) do
If $x_{i} * y_{j} \neq y_{j} * x_{i}$ then

```
Stop: = true;
End If
End If
\(k:=1\)
While \(k \leq|X|\) and not (Stop) do
If \(\left(x_{i} * y_{j}\right) * z_{k} \neq y_{j} *\left(z_{k} * x_{i}\right.\) then
Stop: = true;
End If
End While
End While
End While
If Stop then
(1.) Output(" \(X\) is not an AMR-algebras ")
Else
Output(" \(X\) is an AMR-algebras ")
End If
End.
    Input ( \(X\) : AMR-algebra, \(I\) : subset of \(X\) )
Output(" \(I\) is an AMR-ideal of \(X\) or not")
If \(I=\emptyset\) then
Go to (1.);
End If
Stop:= false;
\(i:=1\)
While \(i \leq|X|\) and not (Stop) do
\(j:=1\)
While \(j \leq|X|\) and not (Stop) do
\(k:=1\)
While \(k \leq|X|\) and not (Stop) do
If \(\left(x_{i} * y_{j}\right) * z_{k} \in I\), and \(z_{k} * x_{i} \in I\) then
If \(y_{i} \notin I\) then
Stop: = false
End If
End While
End While
End While
If Stop then
Output(" \(I\) is an AMR-ideal of \(X\) ")
Else
(1.) Output(" \(I\) is not an AMR-ideal of \(X "\) )
End If
End.
```


References

1. Q.P. Hu and X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), 313-320.
2. Y. Imai and K. Iseki, On axiom systems of propositional calculi, Proc. Japan acad. 42 (1996), 19-22.
3. Y.B. Jun, E.H. Roh, and H.S. Kim, On BH-algebras, Sci. Math. Japonica 1 (1998), 347-354.
4. C.B. Kim and H.S. Kim, On BM-algebras, Sci. Math. Japonicae 63 (2006), 421-427.
5. C.B. Kim and H.S. Kim, On BG-algebras, Demonstr. Math. 41 (2008), 497-505.
6. Y.L. Liu, Y. Xu and J. Meng, BCI-implicative ideals of BCI-algebras, Inform. Sci. $\mathbf{1 7 7}$ (2007), 4987-4996.
7. J. Neggers, S.S. Ahn, and H.S. Kim, On Q-algebras, Int. J. Math. and Math. Sci. 27 (2001), 749-757.
8. J. Neggers and H.S. Kim, On B-algebras, Math. Vensik 54 (2002), 21-29.
9. R.A.K. Omar, On RG-algebras, Pure Math. Sci. 3 (2014), 59-70.
10. A. Walendziak, On BF-algebras, Math. Slovaca 57 (2007), 119-128.
11. M. Chandramouleeswaran, P. Muralikrishna, K. Sujatha and S. Sabarinathan, A note on Z-algebra, Ital J. Pure Appl. Math. 38 (2017), 707-714.
12. Ravi Kumar Bandru, On BRK-algebras, International Journal of Mathematics and Mathematical Sciences 2012 (2012), 1-12.
13. M. Kondo, On the class of QS-algebras, Int. J. Math. and Math. Sc. 2004 (2004), 26292639.
14. C.B. Kim and H.S. Kim, On BO-algebras, Math. Slovaca 62 (2012), 855-864.

Amr K. Amin received M.Sc. from Faculty of Science, Beni-Suef Branch Cairo University (2005) and Ph.D. Joint Supervision Program between, University of Heinrich Heni University in Germany, Faculty of Science and, Ain Shams University, Faculty of Science (2012). Since 1997 he has been at Beni-Suef Branch Cairo University. His research interests algebra, Graph Theory and Number Theory.

Department of Basic Sciences, Adham University College, Umm AL-Qura University, Saudi Arabia.
Department of Mathematics and computer Science, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
e-mail: akgadelrab@uqu.edu.sa, althan72@yahoo.com

[^0]: Received January 8, 2022. Revised April 23, 2022. Accepted August 9, 2022.
 \dagger The author would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (43405002) (22UQU4331287DSR04).
 © 2022 KSCAM.

