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SUFFICIENT OSCILLATION CONDITIONS FOR DYNAMIC
EQUATIONS WITH NONMONOTONE DELAYS
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Abstract. In this article, we analyze the first order delay dynamic equa-
tions with several nonmonotone arguments. Also, we present new oscil-
lation conditions involving lim sup and lim inf for the solutions of these
equations. Finally, we give an example to demonstrate the results.
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1. Introduction

After Stefan Hilger published his Ph.D. thesis in 1988 about the theory of dy-
namic equations on time scales (or measure chain) [15]-[16], this theory has man-
aged to attract the remarkable attention of many scientists studying differential-
difference equations. Both partial and ordinary differential-difference, dynamic
equations, with or without delay, are very commonly employed to model real
problem coming from, physical electronics, nuclear physics, optics and astro-
physics, biomathematics, and also from probability when full moment problems
are involved; see [13]-[17]-[21]. Also, the oscillation of first-order delay dynamic
equations have numerous applications in the study of oscillatory behavior of
higher-order dynamic equations; please see for more detail, [7].
Consider the first order delay dynamic equation with several nonmonotone ar-
guments

x∆(t) +

m∑
i=1

pi(t)x (ϕi(t)) = 0, t ∈ [t0,∞)T, (1)

where T is a time scale unbounded above with t0 ∈ T, pi ∈ Crd([t0,∞)T,R+
0 ),

ϕi ∈ Crd([t0,∞)T,T) are not necessarily monotone for 1 ≤ i ≤ m such that
ϕi(t) ≤ t for all t ∈ T, lim

t→∞
ϕi(t) = ∞. (2)
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First of all, we recall some information and basic concepts on time scales calculus.
If a function p : T → R is rd-continuous and satisfies 1+µ(t)p(t) > 0 for all t ∈ T,
where µ : T → R+

0 is the graininess function defined by µ(t) := σ(t)− t with the
forward jump operator σ : T → T defined by σ(t) = inf{s ∈ T : s > t} for t ∈ T,
it is called positively regressive (we write p ∈ R+). If σ(t) = t or µ(t) = 0, a
point t ∈ T is called right-dense, otherwise it is called right-scattered.
The ∆-derivative x∆ for a function x described on T, then we have
(i) if T = R, x∆ = x′ is the usual derivative
(ii) if T = Z, x∆ = ∆x is the usual forward operator.
If a function x : T → R is delta differentiable for t ∈ Tκ and satisfies equation
(1) for t ∈ Tκ, it is called a solution of the equation (1). We say that a solution
x of equation (1) has a generalized zero at t if x(t) = 0 or if µ(t) > 0 and
x(t)x(σ(t)) < 0. Let supT = ∞ and then a nontrivial solution x of equation
(1) is called oscillatory on [t,∞) if it has arbitrarily large generalized zeros in
[t,∞).
For more comprehensive information, we recommend Bohner and Peterson’s
monographs [4], [5], which summarize and organize this topic, to the readers.
From above statements, for T = R, Eq. (1) reduces to the first order delay
differential equation

x′(t) +

m∑
i=1

pi(t)x(ϕi(t)) = 0, t ∈ R. (3)

In 2016, Braverman et al. [3] obtained the following conditions for the oscillation
of (3). Assume that (2) is satisfied and ϕi(t) are not necessarily monotone for
1 ≤ i ≤ m. Also,

ψi(t) = sup
0≤s≤t

{ϕi(s)}, ψ(t) = max
1≤i≤m

{ψi(t)}, t ≥ 0. (4)

If

lim inf
t→∞

t∫
ψ(t)

m∑
i=1

pi(s)ds >
1

e
(5)

or

lim sup
t→∞

t∫
ψ(t)

m∑
i=1

pi(s)ds > 1, (6)

then all solutions of (3) are oscillatory.
In 2016, J. P. Dix and J. G. Dix [10] found out that if

lim inf
t→∞

t∫
ψ(t)

m∑
i=1

pi(s) exp


ψ(s)∫
ϕi(s)

m∑
j=1

pj(r)dr

 ds >
1

e
(7)
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or

lim sup
t→∞

t∫
ψ(t)

m∑
i=1

pi(s) exp


ψ(t)∫
ϕi(s)

m∑
j=1

pj(r)dr

 ds > 1, (8)

where ϕ(t) = max
1≤i≤m

{ϕi(t)}, ψ(t) = max
s≤t

{ϕ(s)}, then all solutions of (3) are
oscillatory.
Furthermore, you can see some results about equation (3) in [8] and [9].
If we take T = Z, Eq. (1) reduces to the first order delay difference equation

∆x(t) +

m∑
i=1

pi(t)x(ϕi(t)) = 0, t ∈ Z. (9)

In 2006, Berezansky and Braverman [1] obtained that if (ϕi(t)) are not neces-
sarily monotone for 1 ≤ i ≤ m and

lim sup
t→∞

m∑
i=1

pi(t) > 0 and lim inf
t→∞

t−1∑
j=ϕ(t)

m∑
i=1

pi(j) >
1

e
, (10)

where ϕ(t) = max
1≤i≤m

{ϕi(t)} for all t ≥ 0, then all solutions of (9) are oscillatory.
In 2015, Braverman et al. [2], established the following result.
If (ϕi(t)) are not necessarily monotone for 1 ≤ i ≤ m and

lim sup
t→∞

t∑
j=ψ(t)

m∑
i=1

pi(j)

ψ(t)−1∏
l=ϕi(j)

1(
1−

m∑
k=1

pk(l)

) > 1, (11)

where ψi(t) = max
s≤t

{ϕi(s)}, ψ(t) = max
1≤i≤m

{ψi(t)}, then all solutions of (9) are
oscillatory.
Clearly, the following result is obtained by (11) immediately; if (ϕi(t)) are not
necessarily monotone for 1 ≤ i ≤ m and

lim sup
t→∞

t∑
j=ψ(t)

m∑
i=1

pi(j) > 1,

where ψi(t) = max
s≤t

{ϕi(s)}, ψ(t) = max
1≤i≤m

{ψi(t)}, then all solutions of (9) are
oscillatory.
In 2020, Kılıç and Öcalan [19] established following result.
If (ϕi(t)) are not necessarily monotone for 1 ≤ i ≤ m and

lim inf
t→∞

t−1∑
j=ϕ(t)

m∑
i=1

pi(j)

ψ(j)−1∏
l=ϕi(j)

1(
1−

m∑
k=1

pk(l)

) >
1

e
, (12)
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where ψi(t) = max
s≤t

{ϕi(s)}, ψ(t) = max
1≤i≤m

{ψi(t)}, then all solutions of (9) are
oscillatory.
For m = 1 in Eq. (1), we have

x∆(t) + p(t)x(ϕ(t)) = 0, t ∈ [t0,∞)T. (13)

When ϕ(t) is not necessarily monotone, Öcalan et al. [22] studied the equation
(13), then they obtained the following result.
If

lim sup
t→∞

σ(t)∫
ψ(t)

p(s)∆s > 1, (14)

where ψ(t) = sup
s≤t

{ϕ(s)}, then all solutions of (13) are oscillatory.

In 2020, Öcalan [23] established the following oscillation criteria in the general
case that the delay argument ϕ(t) is not necessarily monotone.
If −p ∈ R+ and

lim sup
t→∞

σ(t)∫
ψ(t)

p(s)

e−p (ψ(t), ϕ(s))
∆s > 1 (15)

or

lim inf
t→∞

t∫
ϕ(t)

p(s)

e−p (ψ(s), ϕ(s))
∆s >

1

e
, (16)

where ψ(t) = sup
s≤t

{ϕ(s)},

e−λp (t, ϕ(t)) = exp


t∫

ϕ(t)

ξµ(s)(−λp(s))∆s


and

ξh(z) =

{ Log(1+hz)
h , if h ̸= 0

z , if h = 0

then all solutions of (13) are oscillatory.
Moreover, (16) implies that if ϕ(t) is not necessarily monotone and

lim inf
t→∞

t∫
ϕ(t)

p(s)∆s >
1

e
, (17)

where ψ(t) = sup
s≤t

{ϕ(s)}, then all solutions of (13) are oscillatory.

Very recently, Kılıç and Öcalan [18] presented the following results which are
the first results for equation (1) with nonmonotone arguments in the literature.
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Suppose that −
m∑
i=1

pi ∈ R+. If ϕi(t) are not necessarily monotone for 1 ≤ i ≤ m

and

lim sup
t→∞

σ(t)∫
ψ(t)

m∑
i=1

pi(s)∆s > 1 (18)

or

lim inf
t→∞

t∫
ϕ(t)

m∑
i=1

pi(s)∆s >
1

e
, (19)

where ψi(t) = sup
s≤t

{ϕi(s)} and ψ(t) = max
1≤i≤m

{ψi(t)} , t ∈ T, t ≥ 0.

ϕ(t) = max
1≤i≤m

{ϕi(t)}, then all solutions of (1) oscillate.
As seen above differential and difference equations with several arguments and
also, dynamic equations with one delay have been analyzed by several authors,
while dynamic equations with several deviating arguments have been studied
rarely. Thus, in this paper our aim is to essentially develop these results under
the assumptions that ϕi(t) are not necessarily monotone for 1 ≤ i ≤ m and also
to generalize the results (15) and (16) which are obtained for (13) to (1).

2. Main results

In this section, we present some sufficient conditions for the oscillation of all
solutions of (1).
Set

ψi(t) = sup
s≤t

{ϕi(s)} and ψ(t) = max
1≤i≤m

{ψi(t)} , t ∈ T, t ≥ 0. (20)

Obviously, ψi(t) are nondecreasing and ϕi(t) ≤ ψi(t) ≤ ψ(t) for all 1 ≤ i ≤ m,
t ≥ 0.
The following result was given in [24].

Lemma 2.1. Assume that f : T →R is rd-continuous, g : T →R is nonincreasing
and ϕ : T → T is nondecreasing. If b < u, then

σ(u)∫
b

f(s)g(ϕ(s))∆s ≥ g(ϕ(u))

σ(u)∫
b

f(s)∆s. (21)

The following lemmas can be easily obtained from [6].

Lemma 2.2. Assume that −
m∑
i=1

pi ∈ R+. Then, we get

e
−
m∑
i=1

pi
(t, s) ≤ exp

−
t∫
s

m∑
i=1

pi(u)∆u

 , s ≤ t. (22)



848 Öcalan and Kılıç

Lemma 2.3. Assume that −
m∑
i=1

pi ∈ R+. If

x∆(t) + x(t)

m∑
i=1

pi(t) ≤ 0, (23)

then, we have
x(t) ≤ e

−
m∑
j=1

pj
(t, s)x(s), ∀t ≥ s. (24)

Theorem 2.4. Assume that (2) holds and −
m∑
i=1

pi ∈ R+. If

lim sup
t→∞

∫ σ(t)

ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(t), ϕi(s))

∆s > 1, (25)

where ψ(t) is defined by (20), then all solutions of (1) are oscillatory.

Proof. Assume for the sake of contradiction that x(t) is an eventually positive
solution of (1). If x(t) is an eventually negative solution of (1), the proof the
theorem can be done similarly as below. Then, there exists t1 > t0 such that
x(t), x (ϕi(t)) > 0 for all t ≥ t1 and 1 ≤ i ≤ m. Thus, from (1) we get

x∆(t) = −
m∑
i=1

pi(t)x(ϕi(t)) ≤ 0, ∀ t ≥ t1,

which means that x(t) is an eventually nonincreasing function. Considering this
and ϕi(t) ≤ ψ(t) ≤ t for 1 ≤ i ≤ m, Eq. (1) gives

x∆(t) + x (t)

m∑
i=1

pi(t) ≤ 0, t ≥ t1 (26)

and so we get the following statement from Lemma 2.3.
x(ψ(t)) ≤ e

−
m∑
j=1

pj
(ψ(t), ϕi(s))x(ϕi(s)), for all 1 ≤ i ≤ m,ψ(t) ≥ ϕi(s). (27)

Integrating (1) from ψ(t) to σ(t) and using (27), we get

x(σ(t))− x (ψ(t)) +

∫ σ(t)

ψ(t)

m∑
i=1

pi(s)x(ϕi(s))∆s = 0,

x(σ(t))− x (ψ(t)) +

∫ σ(t)

ψ(t)

m∑
i=1

pi(s)
x (ψ(t))

e
−
m∑
j=1

pj
(ψ(t), ϕi(s))

∆s ≤ 0,

x(σ(t))− x (ψ(t)) + x (ψ(t))

∫ σ(t)

ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(t), ϕi(s))

∆s ≤ 0,
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x (ψ(t))

∫ σ(t)

ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(t), ϕi(s))

∆s− 1

 ≤ 0.

Therefore, we get

lim sup
t→∞

∫ σ(t)

ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(t), ϕi(s))

∆s ≤ 1,

which contradicts to (25). So, the proof of the theorem is completed. □
The following result is easily obtained by using the similar way in the proof

of Lemma 2.3 in [22].

Lemma 2.5. Suppose that (20) holds. Then, we get

lim inf
t→∞

t∫
ψ(t)

m∑
i=1

pi(s)∆s = lim inf
t→∞

t∫
ϕ(t)

m∑
i=1

pi(s)∆s,

where ϕ(t) = max
1≤i≤m

{ϕi(t)} , t ∈ T, t ≥ 0.

Theorem 2.6. Suppose that (2) holds and −
m∑
i=1

pi ∈ R+. If

lim inf
t→∞

∫ t

ϕ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s >
1

e
, (28)

where ψ(t) is defined by (20) and ϕ(t) = max
1≤i≤m

{ϕi(t)} , then all solutions of (1)
are oscillatory.

Proof. Assume for the sake of contradiction that x(t) is an eventually positive
solution of (1). If x(t) is an eventually negative solution of (1), the proof the
theorem can be done similarly as below. Then, there exists t1 > t0 such that
x(t), x (ϕi(t)) > 0 for all t ≥ t1 and 1 ≤ i ≤ m. Thus, from (1) we have

x∆(t) = −
m∑
i=1

pi(t)x(ϕi(t)) ≤ 0, ∀t ≥ t1,

which means that x(t) is an eventually nonincreasing function. By means of this
and ϕi(t) ≤ ψ(t) ≤ t for 1 ≤ i ≤ m, Eq. (1) gives

x∆(t) + x (t)

m∑
i=1

pi(t) ≤ 0, t ≥ t1.

So, we have Lemma 2.3. Then, by using this we get
x(ψ(t)) ≤ e

−
m∑
j=1

pj
(ψ(t), ϕi(t))x(ϕi(t)) for all 1 ≤ i ≤ m,ψ(t) ≥ ϕi(t). (29)
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Hence, by taking into account that x(t) is nonincreasing, ψ(t) ≤ t and (29), from
(1) we obtain

x∆(t) +

m∑
i=1

pi(t)x(ϕi(t)) = 0,

x∆(t) +

m∑
i=1

pi(t)
x(ψ(t))

e
−
m∑
j=1

pj
(ψ(t), ϕi(t))

≤ 0, (30)

x∆(t) +

m∑
i=1

pi(t)
x(t)

e
−
m∑
j=1

pj
(ψ(t), ϕi(t))

≤ 0. (31)

We define
m∑
i=1

qi(t) :=
m∑
i=1

pi(t)
e
−
m∑
j=1

pj

(ψ(t),ϕi(t))
.

So from (31), we obtain

x∆(t) + x(t)

m∑
i=1

qi(t) ≤ 0. (32)

Hence, by Lemma 2.3 and (32) we have

x (t) ≤ e
−
m∑
i=1

qi
(t, ψ(t))x(ψ(t)) for all t ≥ ψ(t)

and
x(ψ(t))

x (t)
≥ 1

e
−
m∑
i=1

qi
(t, ψ(t))

. (33)

On the other hand, we know the following one from Lemma 2.2.

e
−
m∑
i=1

qi
(t, ψ(t)) ≤ exp


t∫

ψ(t)

m∑
i=1

(−qi(s))∆s

 . (34)

Hence, from (33) and (34), we get

x(ψ(t))

x (t)
≥ exp


t∫

ψ(t)

m∑
i=1

qi(s)∆s

 = exp


t∫

ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s

 .

(35)
Moreover, from (28) and Lemma 2.5, there exists a constant c > 0 such that

t∫
ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s ≥ c >
1

e
, t ≥ t2 ≥ t1. (36)
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Combining the inequalities (35) and (36), we have
x(ψ(t))

x (t)
≥ ec. (37)

Since ex ≥ ex for all x ∈ R, from (37), we obtain
x (ψ(t))

x (t)
≥ ec ≥ ec, t ≥ t2, (38)

where ec > 1. By using (38) in (30), it follows by induction that for any positive
integer k, we get

x (ψ(t))

x (t)
≥ (ec)

k for sufficiently large t. (39)

On the other hand, from (36), there exists t∗ ∈ [ψ(t), t), t∗ ∈ T such that
σ(t∗)∫
ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s ≥ c

2
and

σ(t)∫
t∗

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s ≥ c

2
.

(40)
Integrating (1) from ψ(t) to σ(t∗), using Lemma 2.3, we get

x(σ(t∗))− x (ψ(t)) +

σ(t∗)∫
ψ(t)

m∑
i=1

pi(s)x (ϕi(s))∆s = 0,

x(σ(t∗))− x (ψ(t)) +

σ(t∗)∫
ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

x (ψ(s))∆s ≤ 0.

Then, from Lemma 2.1 and (40), we have

−x (ψ(t)) + x (ψ(t∗))

σ(t∗)∫
ψ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s ≤ 0,

x (ψ(t)) ≥ c

2
x (ψ(t∗)) . (41)

Integrating (1) from t∗ to σ(t) and using the same facts, we obtain

x(σ(t))− x (t∗) +

σ(t)∫
t∗

m∑
i=1

pi(s)x (ϕi(s))∆s = 0,

x(σ(t))− x (t∗) +

σ(t)∫
t∗

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

x (ψ(s))∆s ≤ 0.
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Then, from Lemma 2.1 and (40), we get

−x (t∗) + x (ψ(t))

σ(t)∫
t∗

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s ≤ 0,

x (t∗) ≥ c

2
x (ψ(t)) . (42)

Combining the inequalities (41) and (42), we have

x (t∗) ≥ c

2
x(ψ(t)) ≥ c

2

c

2
x (ψ(t∗))

or
x (ψ(t∗))

x (t∗)
≤
(
2

c

)2

< +∞

and this contradicts with (39). So, the proof of the theorem is completed. □

Example 2.7. Let m = 2 and T = 2Z = {2k : k ∈ Z}. Then, we obtain

σ(t) = t+ 2, µ(t) = 2 and x∆(t) =
x(t+ 2)− x(t)

2

for t ∈ T. Thus, Eq. (1) becomes
x(t+ 2)− x(t)

2
+ p1(t)x (ϕ1(t)) + p2(t)x (ϕ2(t)) = 0, t ∈ {2k : k ∈ Z}.

Letting ϕ1(t) = t − 2, ϕ2(t) = t − 4, then ϕ(t) = max
1≤i≤m

{ϕi(t)} = ϕ1(t) = t − 2.
Since pi(t) ∈ {2k : k ∈ Z}, we assume

p1(t) = 0.12 and p2(t) = 0.06, t = 0, 2, 4, . . .

When T = hZ, from (iii) in Theorem 1.79 [4], we have the following.
b∫
a

f(t)∆t =

b
h−1∑
k= a

h

f(kh)h for a < b. (43)

So, by using (43), we observe that, for ϕ(t), pi(t) ∈ {2k : k ∈ Z}

lim inf
t→∞

t∫
ϕ(t)

m∑
i=1

pi(s)∆s = lim inf
t→∞

t
2−1∑
j= t−2

2

2∑
i=1

2pi(2j)

= lim inf
t→∞

t
2−1∑
j= t−2

2

[2p1(2j) + 2p2(2j)]

= lim inf
t→∞

2 [p1(t− 2) + p2(t− 2)]

= 0.36 <
1

e
.
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It means that (19) doesn’t hold. However, by using (43), we have

lim inf
t→∞

t∫
ϕ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s = lim inf
t→∞

t
2−1∑

k= t−2
2

m∑
i=1

2pi(2k)

e
−
m∑
j=1

pj
(ψ(2k), ϕi(2k))

.

Since ϕ1(t) = ψ(t),
e
−
m∑
j=1

pj
(ψ(s), ϕ1(s)) = 1

then, we get
t∫

ψ(t)

p1(s)

e
−
m∑
j=1

pj
(ψ(s), ϕ1(s))

∆s =

t∫
ψ(t)

p1(s)∆s =

t
2−1∑
j= t−2

2

2p1(2j) = 2p1(t− 2) = 0.24.

Also, we have

e
−
m∑
j=1

pj
(ψ(2k), ϕ2(2k)) = exp


ψ(2k)∫
ϕ2(2k)

ξµ(u)

m∑
j=1

(−pj(u))∆u


= exp


ψ(2k)∫
ϕ2(2k)

ξµ(u)(−(p1(u) + p2(u)))∆u


= exp


ψ(2k)

2 −1∑
i=

ϕ2(2k)
2

2 log(1− µ(2i)(p1(2i) + p2(2i)))

µ(2i)


= exp


ψ(2k)

2 −1∑
i=

ϕ2(2k)
2

log(1− 2(p1(2i) + p2(2i)))


= exp

log

ψ(2k)
2 −1∏

i=
ϕ2(2k)

2

(1− 2(p1(2i) + p2(2i)))


=

ψ(2k)
2 −1∏

i=
ϕ2(2k)

2

(1− 2(p1(2i) + p2(2i)))

and then,
t∫

ψ(t)

p2(s)

e
−
m∑
j=1

pj
(ψ(s), ϕ2(s))

∆s =

t
2−1∑
j= t−2

2

2p2(2j)

ψ(2j)
2 −1∏

i=
ϕ2(2j)

2

1

(1− 2(p1(2i) + p2(2i)))
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=

t
2−1∑
j= t−2

2

2p2(2j)

j−2∏
i=j−2

1

(1− 2(p1(2i) + p2(2i)))

= 2p2(t− 2)
1

(1− 2(p1(t− 6) + p2(t− 6)))

= 2(0.06)
1

0.64
= 0.1875.

Finally, we obtain

lim inf
t→∞

t∫
ϕ(t)

m∑
i=1

pi(s)

e
−
m∑
j=1

pj
(ψ(s), ϕi(s))

∆s

= lim inf
t→∞


t∫

ψ(t)

p1(s)

e
−
m∑
j=1

pj
(ψ(s), ϕ1(s))

∆s+

t∫
ψ(t)

p2(s)

e
−
m∑
j=1

pj
(ψ(s), ϕ2(s))

∆s


= 0.24 + 0.1875 = 0.4275 >

1

e
.

So, this implies that all conditions of Theorem 2.6 are satisfied and every solution
of this dynamic equation oscillates.
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