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NEW INEQUALITIES CONNECTED WITH TRACES OF
MATRICES
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Abstract. This paper covers some important operator inequalities con-
nected with traces of matrices, from the classical inequalities we obtained
new inequalities connected with traces of matrices which are better than
the others.
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1. Introduction

If X > 0 and Y > 0, then

n(detX.detY )
m
n ≤ tr(XmY n)

for any positive integer m,n.
Also, Ali M. Farah proved that If B,D ∈ Hn, then

λ1(
B +D

2
) ≤ 1

2
[λ1(B) + λ1(D)],

λn(
B +D

2
) ≤ 1

2
[λ1(B) + λn(D)].

In this article by using some inequalities in [3, 4, 5, 6, 7, 8, 9] we obtained new
inequalities connected with traces of matrices which are better than the others.or
Introduction

Received October 6, 2021. Revised March 6, 2022. Accepted May 16, 2022. ∗Corresponding
author.

© 2022 KSCAM.
979



980 Mohammad Al-Hawari, Azhar Bani nasser, Raed Hatamleh

2. Classical Inequalities

Theorem 2.1. [3] If X > 0 and Y > 0, then n(detX.detY )
m
n ≤ tr(XmY n) for

any positive integer m,n.

Corollary 2.2. [3] Let X and Z be positive definiten × n-matrices, such that
,detZ=1 then n(detX)

1
n ≤ tr(XZ).

Theorem 2.3. [1] If B,D ∈ Hn, then λ1(B+D
2 ) ≤ 1

2 [λ1(B)+λ1(D)], λn(B+D
2 ) ≤

1
2 [λ1(B) + λn(D)].

Theorem 2.4. [4] Let Y and Z be positive semi-definite matrices of the same
order. Then for n=1, 2, ..., 0 ≤ tr(Y Z)2n ≤ (trY )2(trY 2)n−1(trZ2)n,
and 0 ≤ tr(Y Z)2n+1 ≤ tr(Y )tr(Z)tr(Y 2)ntr(Z2)n.

Theorem 2.5. [2] The sum of eigen values of matrix equals its trace λ1 + λ2 +
...+ λn = trB = b11 + b22 + ...+ bmm. The product of the eigenvalues equals its
determinant λ1λ2...λn = detB.

Corollary 2.6. [4] If X and Y are defined in Theorem (4), then 0 ≤ tr(XY )n ≤
tr(X)ntr(Y )n.

3. New Results

Theorem 3.1. If X > 0, then n(detX)
m
n ≤ tr(Xm) for any positive integer

m,n.

Proof. Letting Y = I in Theorem 2.1. Then, we have n(detX.detI)mn ≤ tr(XmIn),
n(detX)

m
n ≤ tr(Xm), and we get the result. □

Theorem 3.2. Let X be positive definite n × n matrices. Then n(detX)
1
n ≤

tr(X).

Proof. Letting X = I in Corollary (2.2). Then, we have n(detX)
1
n ≤ tr(XI) ≤

tr(X). □

Theorem 3.3. If B ∈ Hn and D = B + 1, then, λ1( 2B+I
2 ) ≤ λ1(B) + 1

2 and
λn(

2B+I
2 ) ≤ λn(B) + 1

2

Proof. By applying Theorem(2) and D = B + 1, then we have,

λ1(
B+B+I

2 ) = λ1(
2B+I

2 ),
≤ λ1(B) + λ1(

1
2 )

≤ λ1(B) + ( 12 )

□

Similarly proof for λn
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Proof. By applying Theorem(2) and D = B + 1, then we have,

λn(
B+B+I

2 ) = λn(
2B+I

2 ),
≤ λn(B) + λn(

1
2 )

≤ λn(B) + ( 12 )

□

Theorem 3.4. If X is positive definite matrices of the order n,then
0 ≤ tr(X)n ≤ tr(X)n(n)n,

Proof. Let Y = I on Corollary (2.6). Then

0 ≤ tr(XI)n ≤ tr(X)n(trI)n,
= tr(X)n(n)n

□

Theorem 3.5. Let Y be positive semi-definite matrices of the order n,then for
n = 1, 2, ...

0 ≤ tr(Y )2n ≤ tr(Y )2tr(Y 2)n−1(n)n,
and

0 ≤ tr(Y )2n+1 ≤ tr(Y )tr(Y 2)n(n)n+1.

Proof. Let Z = I in Theorem (3). Then we have

0 ≤ tr(Y I)2n ≤ tr(Y )2tr(Y 2)n−1(trI2)n,
= tr(Y )2tr(Y 2)n−1(n)n

□

Also,
0 ≤ tr(Y )2n+1 ≤ ntr(Y )tr(Y 2)n(n)n.

= tr(Y )tr(Y 2)n(n)n+1.
So; we get the results.

Remark 3.1. The new results are sometimes better than the classical results
for some cases.
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