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LEONARD PAIRS GENERATED FROM Uq(sl2 )
†

AMANI ALQDERAT AND HASAN ALNAJJAR∗

Abstract. Consider the quantum algebra Uq (sl2) over field F (char(F) =

0) with equitable generators x±1, y and z, where q is fixed nonzero, not root
of unity scalar in F . Let V denote a finite dimensional irreducible module
for this algebra. Let Λ ∈ End(V ), and let {A1, A2, A3} = {x, y, z}. First
we show that if Λ, A1 is a Leonard pair, then this Leonard pair have four
types, and we show that for each type there exists a Leonard pair Λ, A1 in
which Λ is a linear combination of 1, A2, A3, A2A3. Moreover, we use Λ to
construct Υ ∈ Uq (sl2) such that Υ, A−1

1 is a Leonard pair, and show that
Υ = I+A1Φ+A1ΨA1 where Φ and Ψ are linear combination of 1, A2, A3.
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1. Introduction

Leonard pairs were introduced by P. Terwilliger [10] to study the sequences
of orthogonal polynomials with discrete support for which the dual sequence
of polynomials is also orthogonal. These polynomials are closely related to fi-
nite dimensional representations of certain quantum groups and Lie algebras.
Consequently many families of Leonard pairs are constructed from these quan-
tum groups and Lie algebras. For examples, in [3] Leonard pairs are constructed
from Universal Lie algebra U (sl2), and in [1] Leonard pairs are constructed from
quantum groups Uq(sl2).

A square matrix is said to be tridiagonal whenever every nonzero entry ap-
pears on, immediately above, or immediately below the main diagonal. A tridi-
agonal matrix is said to be irreducible whenever all entries immediately above
and below the main diagonal are nonzero. A square matrix is said to be upper
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(resp. lower) bidiagonal whenever every nonzero entry appears on or immedi-
ately above (resp. below) the main diagonal, and we say the Leonard pair A, A∗

has LB − TD form whenever the matrix represents A∗ is lower bidiagonal with
subdiagonal entries all 1 and the matrix represents A is irreducible tridiagonal.

In [8] the authors constructed a Leonard pair A, A∗ in which A∗ is one of the
equitable generators of Uq(sl2), they assumed that the Leonard pair has LB−TD
form, and in [9] the author showed that the Leonard pair with this property has
only three types which are q-Racah, q-Hahn, or dual q-Hahn. Moreover, the A
they constructed is not free from A∗.

Our work in this paper is quite different, we don’t assume that the Leonard
pairs A, A∗ has LB − TD form, and we focus our work on the Leonard pairs
A, A∗ in which A∗ is one of the equitable generators of Uq(sl2), and A depends
only on the other generators.

We can summarize our work as follows, let {A1, A2, A3} = {x, y, z}. First we
show that if Λ, A1 is a Leonard pair, then this Leonard pair have four types
which are dual q-Hahn, quantum q-Krawtchouk, affine q-krawchouk, or dual
q-krawtchouk, and we show that for each type there exists a Leonard pair Λ,
A1 in which Λ is a linear combination of 1, A2, A3, A2A3. Moreover, we use Λ
to construct Υ ∈ Uq(sl2) such that Υ, A−1

1 is a Leonard pair, and show that
Υ = I +A1Φ+A1ΨA1 where Φ and Ψ are linear combination of 1, A2, A3.

In [2] we described Leonard pair A, A∗ similar to what we do in this paper
but we use the equitable generators of Universal Lie algebra U (sl2).

Let d denote a nonnegative integer. Throughout this paper Matd+1(F) is the
set of all (d + 1) × (d + 1) matrices where d is nonnegative integer, F is a field
(char(F) = 0), and 0 ̸= q ∈ F is not a root of unity. Let V denote a vector
space over F with finite dimension. By End(V) we mean the set of all linear
transformations from V into V .

We now recall some facts concerning Leonard pairs. For more details about
Leonard pairs see [4, 5, 13, 14, 15].

Definition 1.1. Let V denote a vector space over F with finite positive dimen-
sion. By a Leonard pair on V , we mean an ordered pair A, A∗, where A : V → V
and A∗ : V → V are linear transformations that satisfy both (i) and (ii) below.

(1) There exists a basis for V with respect to which the matrix representing
A∗ is diagonal and the matrix representing A is irreducible tridiagonal.

(2) There exists a basis for V with respect to which the matrix representing
A is diagonal and the matrix representing A∗ is irreducible tridiagonal.

Let {vi}di=0 be the eigenvectors of A in (ii) of Definition 1.1 and let {θi}di=0 be
the corresponding eigenvalues, then the ordering {θi}di=0 and {θd−i}di=0 are said
to be standard and no further ordering is standard. same result hold {θ∗i }di=0.

Definition 1.2 ([12]). Let d denote a non negative integer. By a parameter
array over F of diameter d, we mean a sequence of scalars ({θi}di=0, {θ∗i }di=0;
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{φj}dj=1, {ϕj}dj=1) taken from F that satisfy the following conditions.

θi ̸= θj (0 ≤ i < j ≤ d), (1)
θ∗i ̸= θ∗j (0 ≤ i < j ≤ d), (2)
φi ̸= 0 (1 ≤ i ≤ d), (3)
ϕi ̸= 0 (1 ≤ i ≤ d), (4)

φi = ϕ1

i−1∑
h=0

θh − θd−h
θ0 − θd

+ (θ∗i − θ∗0)(θi−1 − θd) (1 ≤ i ≤ d), (5)

ϕi = φ1

i−1∑
h=0

θh − θd−h
θ0 − θd

+ (θ∗i − θ∗0)(θd−i+1 − θ0) (1 ≤ i ≤ d), (6)

θi−2 − θi+1

θi−1 − θi
=
θ∗j−2 − θ∗j+1

θ∗j−1 − θ∗j
(2 ≤ i, j ≤ d− 1). (7)

In [17], the author described 13 families of parameters arrays over F , each
named according to the sequences of orthogonal polynomials associated with it.
Moreover, he showed that every parameter array over F is one of these families.

The type of the Leonard pair is named according to the parameter array
associated with it.

Theorem 1.3 ([16]). Let A, A∗ be a Leonard pair on V , let ({θi}di=0 (resp.
({θ∗i }di=0) be standard ordering of the eigenvalues of A (resp. A∗). Via a standard
basis the matrix representing A and A∗ are



a0 b0 0
c1 a1 b1
0 c2 a2 b2

. . . . . . . . . . . .
0 cd−1 ad−1 bd−1

0 0 cd ad


and diag(θ∗0 , θ∗1 , ..., θ∗d), where

ai = θi +
φi

θ∗i − θ∗i−1

+
φi+1

θ∗i − θ∗i+1

(0 ≤ i ≤ d), (8)

bi = φi+1
Πi−1
h=0(θ

∗
i − θ∗h)

Πih=0(θ
∗
i+1 − θ∗h)

(0 ≤ i ≤ d− 1), (9)

ci = ϕi
Πd−i−1
h=0 (θ∗i − θ∗d−h)

Πd−ih=0(θ
∗
i−1 − θ∗d−h)

(1 ≤ i ≤ d). (10)

where φ0 = 0 and φd+1 = 0.
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2. The Quantum algebra Uq(sl2)

In this section we recall some facts concerning the quantum algebra Uq(sl2)
and we state the main results in this paper.

Lemma 2.1 ([6]). The algebra Uq(sl2) is isomorphic to the unital associative
F-algebra with generators x±1, y, z and the following relations:

xx−1 = x−1x = 1,

qxy − q−1yx

q − q−1
= 1,

qyz − q−1zy

q − q−1
= 1,

qzx− q−1xz

q − q−1
= 1.

We call x±1, y, z the equitable generators for the quantum algebra Uq(sl2).

Lemma 2.2 ([6]). For a nonnegative integer d, there is an irreducible finite-
dimensional Uq(sl2)-module Vd with basis v = {v0, v1, …, vd} such that

xvi = qd−2ivi (0 ≤ i ≤ d),

(y − q2i−dI)vi = (q−d − q2i+2−d)vi+1 (0 ≤ i ≤ d− 1),

(y − qdI)ud = 0,

(z − q2i−dI)vi = (qd − q2i−2−d)vi−1 (1 ≤ i ≤ d),

(z − q−dI)v0 = 0.

The main results of this paper are the following theorems

Theorem 2.3. Let V denote an irreducible Uq(sl2)-module with finite dimen-
sion. Let Λ ∈ End(V ), let {A1, A2, A3} = {x, y, z}. Assume Λ, A1 is a Leonard
pair, then the type of this Leonard pair is dual q-Hahn, quantum q-Krawtchouk,
affine q-krawchouk, or dual q-krawtchouk. Moreover, for each type there exists
a Leonard pair Λ, A1 in which Λ is a linear combination of 1, A2, A3, A2A3

Theorem 2.4. With reference to Theorem 2.3, there exists Υ ∈ Uq(sl2) such
that Υ, A−1

1 is a Leonard pair, and Υ = aI +A1Φ+A1ΨA1 where Φ and Ψ are
linear combination of 1, A2, A3.

Our work in this paper will be as follows, in the third section, we will show
that if Λ, x is a Leonard pair, then the type of this pair is dual q-Hahn, quantum
q-Krawtchouk, affine q-krawchouk, or dual q-krawtchouk, and for each type we
construct Λ in terms of generators y and z. In section four we use the symmetry
to find the linear transformations B and C such that B, y and C, z are Leonard
pairs. In the last section we prove Theorem 2.4, we use Λ that appears in section
three to construct Υ.
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3. The Leonard pair Λ, x

Definition 3.1. Let Λ, Λ∗ be a Leonard pair, let β be the common value of (7)
minus one. We call β the fundamental parameter of the pair Λ, Λ∗ .

Lemma 3.2. With reference to 2.2, let Λ ∈ End(Vd) such that Λ, x is a Leonard
pair, then the fundamental parameter of the pair Λ, x is β = q2 + q−2.

Proof. Note that from Lemma 2.2 the standard ordering of the eigenvalues of x
is θ∗i = qd−2i, (0 ≤ i ≤ d), and for (2 ≤ i ≤ d− 1)

θ∗i−2 − θ∗i+1

θ∗i−1 − θ∗i
= q2 + q−2 + 1.

Hence the result hold from Definition 3.1. □

By [17], if Λ, Λ∗ is a Leonard pair with fundamental parameter β = q2+ q−2,
then there exist scalars a, b, c, a∗, b∗, c∗, and ζ such that the parameter array
associated with this Leonard pair is

θi = a+ bq2i + cq−2i (0 ≤ i ≤ d),

θ∗i = a∗ + b∗q2i + c∗q−2i (0 ≤ i ≤ d),

φi = (1− q2i)(1− q2d−2i+2)(ζ − bb∗q2i−2 − cc∗q−2i−2d) (1 ≤ i ≤ d),

ϕi = (1− q2i)(1− q2d−2i+2)(ζ − cb∗q2i−2d−2 − bc∗q−2i) (1 ≤ i ≤ d).

Moreover, four parameter arrays have the property b∗ = 0 which are
(1) Dual q-Hahn in which b ̸= 0, b∗ = 0, c ̸= 0, c∗ ̸= 0, ζ ̸= 0,

(2) Affine q-Krawtchouk in which b = 0, b∗ = 0, c ̸= 0, c∗ ̸= 0, ζ ̸= 0,

(3) Quantum q-Krawtchouk in which b ̸= 0, b∗ = 0, c = 0, c∗ ̸= 0, ζ ̸= 0,

(4) Dual q-Krawtchouk in which b ̸= 0, b∗ = 0, c ̸= 0, c∗ ̸= 0, ζ = 0.

Lemma 3.3. Let ζ, b, c ∈ F , let
θi = a+ bq2i + cq−2i (0 ≤ i ≤ d),

θ∗i = a∗ + qd−2i (0 ≤ i ≤ d),

φi = (1− q2i)(1− q2d−2i+2)(ζ − cq−2i−d) (1 ≤ i ≤ d),

ϕi = (1− q2i)(1− q2d−2i+2)(ζ − bqd−2i) (1 ≤ i ≤ d).

Then the sequence ({θi}di=0, {θ∗i }di=0; {φi}di=1, {ϕi}di=1) is a parameter array if
and only if q2i ̸= 1, ζqd+2i ̸= c, ζq2i−d ̸= b for 1 ≤ i ≤ d, and that bq2i−2 ̸= c
for 2 ≤ i ≤ 2d.

Proof. Clear from the paragraph after the proof of Lemma 3.2 by taking b∗ = 0
and c∗ = qd.
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Note that bq2i−2 ̸= c for 2 ≤ i ≤ 2d implies that {θi}di=0 are distinct, and
q2i ̸= 1, ζqd+2i ̸= c, ζq2i−d ̸= b for 1 ≤ i ≤ d implies {φi}di=1 and {ϕi}di=1 are
nonzero. Moreover, if b = 0, then the condition ζq2i−d ̸= b become ζ ̸= 0, and if
c = 0, then the condition ζqd+2i ̸= c become ζ ̸= 0. Also note that if one of b or
c is zero but not both, then {θi}di=0 are distinct.

□
Now it is clear that the type of the Leonard pair Λ, x in Lemma 3.2 is dual

q-Hahn, quantum q-Krawtchouk, affine q-krawchouk, or dual q-krawtchouk.
In the following work, we will find Λ in terms of the equitable generators of

Uq(sl2) in each case. For the rest of the paper, let d be an integer (d ≥ 2),
Λ ∈ Uq(sl2), and V is an irreducible finite-dimensional Uq(sl2)-module.

Definition 3.4. With reference to Lemma 2.2, let
Ω = eII + eyy + ezz + eyzyz,

where eI , ey, ez, eyz ∈ F .

Lemma 3.5. With reference to Lemma 3.2, if the Leonard pair Λ, x has type
dual q-Hahn , then V have a basis s = {si}di=0 such that [Λ]s is tridiagonal where

[A]s(i, i) = q2i−d−2(ζ(q2d+2−q2i−q2i−2+1)+cq−d)+bq2i−2+a (1 ≤ i ≤ d+1),

[A]s(i+ 1, i) = (ζq2i−d − b)(q2i − 1) (1 ≤ i ≤ d),

[A]s(i, i+ 1) = (q2i−2d−2 − 1)(ζqd+2i − c) (1 ≤ i ≤ d),

and [x]s = diag{qd, qd−2..., q2−d, q−d} for some nonzero b, c, and ζ ∈ F such
that none of q2i, ζc−1qd+2i, ζb−1q2i−d is equal to 1 for 1 ≤ i ≤ d, and that
bc−1q2i−2 ̸= 1 for 2 ≤ i ≤ 2d.

Proof. The parameter array associated with the pair Λ, x is given in Lemma
3.3. Let a∗0 = 0, let V be the module in Theorem 1.3 and let s be it is
standard basis. Now the eigenvalues θ∗i = qd−2i (0 ≤ i ≤ d), hence [x]s =
diag{qd, qd−2..., q2−d, q−d}, and the entries of the matrix [Λ]s hold by formulas
in this theorem. □
Theorem 3.6 ([16]). Let d denote a nonnegative integer, let B and B∗ de-
note matrices in Matd+1(F). Assume B is lower bidiagonal and B∗ is upper
bidiagonal. Then the following are equivalent.

(1) The pair B, B∗ is a Leonard pair in Matd+1(F).
(2) There exists a parameter array ({θi}di=0, {θ∗i }di=0; {φj}dj=1, {ϕj}dj=1)

over F such that
B(i, i) = θi, B∗(i, i) = θ∗i (0 ≤ i ≤ d),
B(j, j − 1)B∗(j − 1, j) = φj (1 ≤ j ≤ d).

Suppose (i), (ii) hold. Then the parameter array in (ii) is uniquely determined
by B, B∗.
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Lemma 3.7. With reference to Lemma 3.5, the pair [Λ]s, [x]s is a Leonard
pair in Matd+1(F) if and only if b, c, and ζ ∈ F are nonzero, and q2i ̸= 1,
ζqd+2i ̸= c, ζq2i−d ̸= b for 1 ≤ i ≤ d, and that bc−1q2i−2 ̸= 1 for 2 ≤ i ≤ 2d.

Proof. Let T be (d + 1) × (d + 1) matrix indexed 1, 2, ..., d + 1 such that the
(i, j)-entry is

Tij =



(−1)i+1qi(i−1)−2d(j−1)

j−1∏
t=i

(ζq2t+d − c)(q2d−2t+2 − 1)∏j−2
m=j−i(q

2m+2 − 1)
∏i−1
n=1(bq

2d−2n − qdζ) j ≥ i

0 j < i

then the matrix T−1[Λ]sT is lower bidiagonal with entries T−1[Λ]sT (i, i) =
θi−1, (1 ≤ i ≤ d + 1), T−1[Λ]sT (i + 1, i) = 1, (1 ≤ i ≤ d), and the matrix
T−1[x]sT is upper bidiagonal with entries T−1[x]sT (i, i) = θ∗i−1, (1 ≤ i ≤ d+1),
T−1[x]sT (i, i+1) = φi, (1 ≤ i ≤ d), where {θi}di=0, {θ∗i }di=0, {φi}di=1, {ϕi}di=1 are
as in Lemma 3.3 and these entries satisfy (ii) in Theorem 3.6. Hence, T−1[Λ]sT ,
T−1[x]sT is a Leonard pair if and only if b, c, and ζ ∈ F are nonzero, and none
of q2i, ζc−1qd+2i, ζb−1q2i−d is equal to 1 for 1 ≤ i ≤ d, and that bc−1q2i−2 ̸= 1
for 2 ≤ i ≤ 2d hold, which implies that the pair [Λ]s, [x]s is a Leonard pair if
and only if the same conditions hold. □

Lemma 3.8. With reference to Definition 3.4, Ω, x is a Leonard pair of dual
q-Hahn type if and only if ey ̸= 0, ez ̸= 0, eyz ̸= 0, eyz + qd−2i+2ez ̸= 0,
eyz + q2i−dey ̸= 0, q2i ̸= 1 for 1 ≤ i ≤ d, and ez − qd−2i+2ey ̸= 0 for 2 ≤ i ≤ 2d.

Proof. The standard ordering of the eigenvalues of x with respect to the basis
{si}di=0 in Lemma 3.5 is {qd, qd−2..., q2−d, q−d} which is the same standard or-
dering with respect to the basis v in Lemma 2.2, hence {si = kivi}di=0 for some
nonzero scalars ki ∈ F . Let ki = 1 (0 ≤ i ≤ d), then routine calculations shows
that [Λ]s = [Ω]v if and only if

eI = a+ qd+2ζ, ez = cq−d,

ey = qdb, eyz = −qd+2ζ.

Note that ζc−1qd+2i ̸= 1 implies eyz + qd−2i+2ez ̸= 0, ζb−1q2i−d ̸= 1 implies
eyz + qd−2i+2ey ̸= 0, and bc−1q2i−2 ̸= 1 implies ey − q2i−2d−2ez ̸= 0.

□

For the three other cases note that the parameter arrays associated with them
are similar to one associated with dual q-Hahn but some scalars become zeros.

We start with Leonard pair of affine q-krawchouk type, let b = 0 in the
parameter array associated with dual q-Hahn, then the result parameter array
will be of affine q-krawchouk type, hence we have the following Lemmas
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Lemma 3.9. With reference to Lemma 3.2, if the Leonard pair Λ, x has type
affine q-krawchouk , then V have a basis s = {si}di=0 such that [Λ]s is tridiagonal
where

[Λ]s(i, i) = q2i−d−2(ζ(q2d+2 − q2i−2 − q2i + 1) + q−dc) + a (1 ≤ i ≤ d+ 1),

[Λ]s(i+ 1, i) = ζq2i−d(q2i − 1) (1 ≤ i ≤ d),

[Λ]s(i, i+ 1) = (q2i−2d−2 − 1)(ζq2i+d − c) (1 ≤ i ≤ d),

and [x]s = diag{qd, qd−2..., q2−d, q−d} for some nonzero c, and ζ ∈ F , and
none of q2i, ζc−1q2i+d is equal to 1 for 1 ≤ i ≤ d.

Proof. The parameter array associated with the pair Λ, x is given in Lemma 3.3
which is the same of the parameter array of dual q-Hahn but b = 0. Hence, let
b = 0 in Lemma 3.5 to get the result.

□

Lemma 3.10. With reference to Lemma 3.9, the pair [Λ]s, [x]s is a Leonard
pair in Matd+1(F) if and only if c, and ζ ∈ F are nonzero, and none of q2i,
ζc−1q2i+d is equal to 1 for 1 ≤ i ≤ d.

Proof. Clear from Lemmas 3.7 and 3.9 □

Lemma 3.11. With reference to Definition 3.4, Ω, x is a Leonard pair of affine
q-krawchouk type if and only if ey = 0, ez ̸= 0, eyz ̸= 0, eyz + qd−2i+2ez ̸= 0,
and q2i ̸= 1 for 1 ≤ i ≤ d.

Proof. Let b = 0 in 3.8 and note that [Λ]s = [Ω]v if and only if

eI = a+ qd+2ζ, ez = cq−d,

ey = 0, eyz = −qd+2ζ.

Now ζc−1qd+2i ̸= 1 implies −q2ieyz
qd+2ez

̸= 1 implies eyz + qd−2i+2ez ̸= 0 for
1 ≤ i ≤ d.

So the result hold from Lemma 3.10. □

For th Leonard pair of quantum q-Krawtchouk type, let c = 0 in the in
parameter array associated with dual q-Hahn, then the result parameter array
will be of quantum q-Krawtchouk type, hence we have the following Lemmas

Lemma 3.12. With reference to Lemma 3.2, assume that the type of the pair
Λ, x is a quantum q-Krawtchouk , then the module V have a basis s = {si}di=0

such that [Λ]s is tridiagonal where

[Λ]s(i, i) = q2i−d−2(ζ(q2d+2 − q2i − q2i−2 + 1)) + bq2i−2 + a (1 ≤ i ≤ d+ 1),
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[Λ]s(i+ 1, i) = (ζq2i−d − b)(q2i − 1) (1 ≤ i ≤ d),

[Λ]s(i, i+ 1) = ζqd+2i(q2i−2d−2 − 1) (1 ≤ i ≤ d),

and [x]s = diag{qd, qd−2..., q2−d, q−d} for some nonzero b, and ζ ∈ F such that
none of q2i, ζb−1q2i−d is equal to 1 for 1 ≤ i ≤ d.

Proof. The parameter array associated with the Leonard pair Λ, x is given in
Lemma 3.3, let c = 0 in Lemma 3.5 to get the result.

□
Lemma 3.13. With reference to Lemma 3.12, the pair [Λ]s, [x]s is a Leonard
pair in Matd+1(F) if and only if b, and ζ ∈ F are nonzero, and none of q2i,
ζb−1q2i−d is equal to 1 for 1 ≤ i ≤ d.

Proof. Clear from Lemmas 3.7 and 3.12.
□

Lemma 3.14. With reference to Definition 3.4, Ω, x is a Leonard pair of
quantum q-Krawtchouk type if and only if ey ̸= 0, ez = 0, eyz ̸= 0, eyz+q2i−dey ̸=
0 for 1 ≤ i ≤ d.

Proof. Let c = 0 in 3.8 and note that [Λ]s = [Ω]v if and only if

eI = a+ qd+2ζ, ez = 0,

ey = qdb, eyz = −qd+2ζ.

Now ζb−1q2i−d implies ey + q2i−d−2eyz ̸= 0, So the result hold from Lemma
3.13.

□
Lemma 3.15. With reference to Lemma 3.2, assume that the pair Λ, x has dual
q-Krawtchouk type, then the module V have a basis s = {si}di=0 such that [Λ]s is
tridiagonal where

[Λ]s(i, i) = cq2i−2d−2 + bq2i−2 + a (1 ≤ i ≤ d+ 1),

[Λ]s(i+ 1, i) = −b(q2i − 1) (1 ≤ i ≤ d),

[Λ]s(i, i+ 1) = −c(q2i−2d−2 − 1) (1 ≤ i ≤ d),

and [x]s = diag{qd, qd−2..., q2−d, q−d} for some nonzero b, and c ∈ F such that
q2i ̸= 1, for 1 ≤ i ≤ d, and that bc−1q2i−2 ̸= 1 for 2 ≤ i ≤ 2d.

Proof. For the Leonard pair of dual q-Krawtchouk type, let ζ = 0 in the in
parameter array associated with dual q-Hahn, then the result parameter array
will be of dual q-Krawtchouk type, hence taking ζ = 0 in Lemma 3.5 gives the
result.

□
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Lemma 3.16. With reference to Lemma 3.15, the pair [Λ]s, [x]s is a Leonard
pair in Matd+1(F) if and only if b, and c ∈ F are nonzero, and none of q2i ̸= 1,
for 1 ≤ i ≤ d, and bc−1q2i−2 ̸= 1 for 2 ≤ i ≤ 2d.

Proof. Clear from Lemmas 3.7 and 3.15.
□

Lemma 3.17. With reference to Definition 3.4, Ω, x is a Leonard pair of dual
q-Krawtchouk type if and only if ey ̸= 0, ez ̸= 0, eyz = 0, ez − q2i−2d−2ey ̸= 0
for 2 ≤ i ≤ 2d.

Proof. Let ζ = 0 in 3.8, to see that [Λ]s = [Ω]v if and only if

eI = a, ez = q−dc,

ey = qdb, eyz = 0.

Note that bc−1q2i−2 ̸= 1 implies ez − q2i−2d−2ey ̸= 0, so the result hold from
Lemma 3.16. □

4. The Leonard pairs B, y and C, z

In this section we find B and C in terms of the equitable generators of Uq(sl2)
such that B, y and C, z are Leonard pairs. We recall some formulas that we
will use in this section.

For all integers k and for all nonnegative integers n, m write

[k] =
qk − q−k

q − q−1
, [n]! = [1][2] · · · [n],

[ n
m

]
=


[n]!

[n−m]![m]!
n ≥ m

0 n < m

and let

Pij = (−1)jq(j−d)(i−1)

[
i

d− j

]
, Qij = (−1)jqj(d−i−1)

[
d− i

j

]
(0 ≤ i, j ≤ d).

Lemma 4.1 ([11]). With reference to Lemma 2.2,
(1) Let uj =

∑d
i=d−j Pijvi (0 ≤ j ≤ d), then u = {u0, u1, . . . , ud} is a

standard y-eigenbasis of Vd.
(2) Let wj =

∑d−j
i=0 Qijvi (0 ≤ j ≤ d), then w = {w0, w1, . . . , wd} is a

standard z-eigenbasis of Vd.

Lemma 4.2 ([11]). With reference to Lemma 4.1,

[z]v = [x]u = [y]w, [x]v = [y]u = [z]w, [y]v = [z]u = [x]w.
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Lemma 4.3. Let k0, k1, k2 and k3 be scalars in F , let
A = k0I+k1y+k2z+k3yz, B = k0I+k1z+k2x+k3zx, C = k0I+k1x+k2y+k3xy.

If [A]v, [x]v is a Leonard pair, then both [B]u, [y]u and [C]w, [z]w are Leonard
pairs. Moreover the three pairs have the same type.

Proof. Clear from Lemma 4.2 and note that [A]v = [B]u = [C]w. □

proof of Theorem 2.3. Clear from Lemmas 3.8, 3.11, 3.14, and 3.17, and 4.3. □

5. The Leonard pair Υ, x−1

In this section we find Υ in terms of the equitable generators of Uq(sl2) such
that Υ, x−1 is a Leonard pair. By [16], if ({θi}di=0, {θ∗i }di=0; {φj}dj=1, {ϕj}dj=1)

is a parameter array, then ({θd−i}di=0, {θ∗d−i}di=0; {φd−j+1}dj=1, {ϕd−j+1}dj=1) is
also a parameter array.

We will find Υ for the case A, x is a Leonard pair of affine q-Krawchouk type,
the other cases will be similar.

Lemma 5.1. Let ({θi}di=0, {θ∗i }di=0; {φj}dj=1, {ϕj}dj=1) be a parameter array of
affine q-Krawchouk type, replace q by q−1 and let

ϵi = a+ c′q2i (0 ≤ i ≤ d),

ϵ∗i = a∗ + (c∗)′q2i (0 ≤ i ≤ d),

φ′
i = (1− q−2i)(1− q−2d+2i−2)(ζ − c′(c∗)′q2i+2d) (1 ≤ i ≤ d),

ϕ′i = (1− q−2i)(1− q−2d+2i−2)ζ ′ (1 ≤ i ≤ d),

for some nonzero c′, (c∗)′, and ζ ′ ∈ F , and none of q−2i, ζ ′(c′(c∗)′)−1q−2d−2i

is equal to 1 for 1 ≤ i ≤ d. Then Φ = ({ϵi}di=0, {ϵ∗i }di=0; {φ′}dj=1, {ϕ′}dj=1) is a
parameter array.

Proof. Replace c′ by cq−2d, (c∗)′ by c∗q−2d, ζ ′ by ζq−2d−2 to show that ϵi = θd−i,
ϵ∗i = θ∗d−i, φ′

i = φd−i+1 and ϕ′i = ϕd−i+1. where ({θi}di=0, {θ∗i }di=0; {φj}dj=1,
{ϕj}dj=1) is a parameter array of affine q-Krawchouk type given in the paragraph
after Lemma 3.2. Hence the result hold.

□

In the next work we will use the notation c, c∗ and ζ instead of c′, (c∗)′ and
ζ ′.

Lemma 5.2. Let B, B∗ be the Leonard pair associated with the parameter array
in Lemma 5.1, then there is an irreducible finite-dimensional Uq(sl2)-module Vd
with basis t = {ti}di=0 such that [B]t is tridiagonal where
[B]t(i, i) = qd−2i+2ζ(q−2d−2−q−2i+2−q−2i+1)+cq2d−2i+2+a (1 ≤ i ≤ d+1),

[B]t(i+ 1, i) = ζqd−2i(q−2i − 1) (1 ≤ i ≤ d),

[B]t(i, i+ 1) = (q2d−2i+2 − 1)(ζq−d−2i − c) (1 ≤ i ≤ d),
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and [B∗]t = diag{q−d, q2−d, ..., qd−2, qd} for some nonzero c, and ζ ∈ F , and
none of q−2i, ζc−1q−d−2i is equal to 1 for 1 ≤ i ≤ d.

Proof. The parameter array associated with the pair B, B∗ in Lemma 5.1 is
obtained by replacing q by q−1 in the parameter array associated with Leonard
pair of affine q-Krawchouk type, so by replacing q by q−1 in Lemma 3.9 and
taking c∗ = q−d. we can see that [B∗]t = diag{q−d, q2−d, ..., qd−2, qd}, and the
entries of the matrix [B]t as they appear in the lemma. □

Lemma 5.3. With reference to Lemma 5.2, the pair [B]t, [B∗]t is a Leonard
pair iff c, and ζ ∈ F are nonzero, and none of q−2i, ζc−1q−d−2i is equal to 1 for
1 ≤ i ≤ d.

Proof. Similar to proof of Lemma 3.7 but take b = 0 and replace q by q−1. □

Lemma 5.4. Let Υ ∈ Uq(sl2) such that Υ, x−1 is a Leonard pair with parameter
array as in Lemma 5.1, then Υ = aII+x(bII+ bzz)+x(cII+ cyy+ czz)x where

aI = a+ c, bI = ζ(1− q−2)(1− q−2d) + cqd, bz = −c,

cI = −ζq−d(1 + q−2), cy = ζq−2, cz = ζq−2d.

for nonzero c, and ζ ∈ F , and none of q−2i, ζc−1q−d−2i is equal to 1 for
1 ≤ i ≤ d.

Proof. The action of the generators x, y and z on the basis v = {vi}di=0 is
described in 2.2, now routine calculation shows that [Υ]v = [B]t and [x−1]v =
[B∗]t as in Lemma 5.2. □

Lemma 5.5. Let Υ ∈ Uq(sl2) such that Υ = aII +x(bII + bzz)+x(cII + cyy+

czz)x, then Υ, x−1 is a Leonard pair iff there exist nonzero r, and s ∈ F such
that

bI = s(1− q−2)(1− q−2d) + rqd, bz = −r,
cI = −sq−d(1 + q−2), cy = sq−2, cz = sq−2d.

and none of q−2i, sr−1q−d−2i is equal to 1 for 1 ≤ i ≤ d.

Proof. Clear from Lemmas 5.3, and 5.4, let s = ζ, r = c. □

For the other types of Leonard pairs Λ, x that appear in previous sections,
we can use same work to find Υ ∈ Uq(sl2) such that Υ, x−1 is a Leonard pair,
we summarize this in the following lemma

Lemma 5.6. Assume that A, x is a Leonard pair, then there exists Υ ∈ Uq(sl2),
such that Υ, x−1 is a Leonard pair. Moreover

(1) If the type of A, x is dual q-Hahn, then Υ = aI + xΦ + xΨx where Φ
and Ψ are linear combination of I, y, z.

(2) If the type of A, x is quantum q-Krawtchouk, then Υ = aI + xΦ + xΨx
where Φ is a linear combination of I, y, and Ψ is a linear combination
of I, y, z.
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(3) If the type of A, x is dual q-Krawtchouk, then Υ = aI + xΦ where Φ is
a linear combination of I, y, z.

Proof. Similar to proof of Lemma 5.4, use Lemmas 3.8, 3.14 and 3.17. □

proof of Theorem 2.4. Clear from Lemmas 5.4, 5.6 and the fact in the para-
graph after Lemma 4.1. □
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