Acknowledgement
This work was supported by the National Natural Science Foundation of China (52178195), the Xiamen Construction Science and Technology plan project (XJK2020-1-9), the project sponsored by Harbin city science and technology innovation talents special funds (2011RFLXG014), and the National Foundation of Korea (NRF-2021R1A5A1032433).
References
- Lana, J.A.D., Junior, P.A.A.M., Magalhaes, C.A., Magalhaes, A. L.M.A., Junior, A.C.D.A. and Ribeiro, M.S.D.B. (2021), "Behavior study of prestressed concrete wind-turbine tower in circular cross-section", Eng. Struct., 227(111403). https://doi.org/10.1016/j.engstruct.2020.111403.
- Haar, C.V. D. and Marx, S. (2015), "Design aspects of concrete towers for wind turbines", J. South African Institution of Civil Engineers, 57(4), 30-37. http://dx.doi.org/10.17159/2309-8775/2015/v57n4a4.
- Ma, H. and Zhang, D. (2016), "Seismic response of a prestressed concrete wind turbine tower", Int. J. Civil Eng., 14(8), 561-571. https://doi.org/10.1007/s40999-016-0029-y.
- Zuo, H., Kaiming, B. and Hao, H. (2018), "Dynamic analyses of operating offshore wind turbines including soil structure interaction", Eng. Struct., 157, 42-62. https://doi.org/10.1016/j.engstruct.2017.12.001.
- Zhang, R., Zhao, Z. and Dai, K. (2019), "Seismic response mitigation of a wind turbine tower using a tuned parallel inerter mass system", Eng. Struct., 180, 29-39. https://doi.org/10.1016/j.engstruct.2018.11.020.
- Chen, J., Li, J. and He, X. (2020), "Design optimization of steel- concrete hybrid wind turbine tower based on improved genetic algorithm", Struct. Des. Tall Spec. Build., 29(10), e1741. https://doi.org/10.1002/tal.1741.
- Chen, J., Li, J., Wang, D. and Feng, Y. (2021), "Seismic response analysis of steel-concrete hybrid wind turbine tower", J. Vib. Control, 12, 1-14. https://doi.org/10.1177/10775463211007592.
- Ma, H. and Meng, R. (2014), "Optimization design of prestressed concrete wind-turbine tower", Sci. China Technol. Sci., 57(2), 414-422. https://doi.org/10.1007/s11431-013-5442-8.
- Lotfy, I. (2012), Prestressed Concrete Wind Turbine Supporting System. Master Thesis, University of Nebraska.
- Xu, C., Zhang, B., Liu, S. and Su, Q. (2020), "Cracking and bending strength evaluations of steel-concrete double composite girder under negative bending action", Steel Compos. Struct., 35(3), 371-384. https://doi.org/10.12989/scs.2020.35.3.371.
- Kim, S., Hwang, H.K. and Kang, T.H.-K. (2021), "Behavior of high-strength and ultrahigh performance concrete targets subjected to relatively rigid projectile impact", ASCE J. Struct. Eng., 147(10).
- Kim, S., Kang, T. H.-K., and Hong, S.-G. (2021), "Impact performance of thin prefabricated ultra-high performance concrete facade", 118(1), ACI Struct. J., 167-178.
- Sharif, A.M., Assi, N.A. and Al-Osta, M.A. (2020), "Use of UHPC slab for continuous composite steel-concrete girders", Steel Compos. Struct., 34(3), 321-332. https://doi.org/10.12989/scs.2020.34.3.321.
- Jammes, F.-X., Cespedes, X. and Resplendino, J. (2013), "Design of offshore wind turbines with UHPC", Proceedings of International Symposium on Ultra-High Performance FiberReinforced Concrete (UHPFRC 2013), 443-452.
- Gu, C., Zhao, S., Sun, W. and Wang, Q. (2013), "Production of precast UHPFRC pavement cover plates in High-speed railway construction", Proceedings of International Symposium on Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC 2013), 463-470.
- Schmitz, G.M. (2013), Design and Experimental Validation of 328 ft (100 m) Tall Wind Turbine Towers Utilizing High Strength and Ultra-High Performance Concrete, Master Thesis, Iowa State University.
- Peggar, R. and Sritharan, S. (2017), "Large-scale strength testing of Hexcrete segment designed with UHPC for tall wind turbine towers", AFGC-ACI-fib-RILEM Int. Symposium on Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC 2017), 615-624.
- Yang, J. (2013), Numerical Simulation Analysis of UHPC-Steel Combined Ultra-Large Wind Turbine Tower Structure Performance, Master Thesis, Harbin Engineering University.
- Zhu, R.S., Zheng, Z.Z., Liu, Y.M., Shen, J., Xiao, Y., Jiang, D.X., and Chen, J. (2012), "Finite element analysis for MW wind turbine tower", Appl. Mech. Mater., 130-134, 124-127. https://doi.org/10.4028/www.scientific.net/AMM.130-134.124.
- Zhao, Z., Dai, K., Camara, A., Bitsuamlak, G. and Sheng, C. (2019), "Wind Turbine Tower Failure Modes under Seismic and Wind Loads", J. Perform. Construct. Facilities, 33(2). http://dx.doi.org/10.1061/(ASCE)CF.1943-5509.0001279.
- Wang, L., Kolios, A., Nishino, T., Delafin, P.-L. and Bird, T. (2016), "Structural optimisation of vertical-axis wind turbine composite blades based on finite element analysis and genetic algorithm", Compos. Struct., 153, 123-138. https://doi.org/10.1016/j.compstruct.2016.06.003.
- Quilligan, A., O'Connor, A. and Pakrashi, V. (2012), "Fragility analysis of steel and concrete wind turbine towers", Eng. Struct., 36, 270-282. https://doi.org/10.1016/j.engstruct.2011.12.013.
- Tao, B. (2020), Dynamic Model of Wind Turbine and Vibration Control of Tower, Master Thesis, Hunan University of Science and Technology.
- Li, J. (2020), Research on Verticality Detection Method of Wind Power Tower, Ph.D. Dissertation, Lanzhou Jiaotong University.
- Zhang, T. (2020), Design and Research on Large-Size Tower Structure of Offshore Wind Rurbine, Ph.D. Dissertation, Dalian Maritime University.
- Bazeos, N., Hatzigeorgiou, G.D., Hondros, I.D., Karamaneas, H., Karabalis, D.L. and Beskos, D.E. (2002), "Static, seismic and stability analyses of a prototype wind turbine steel tower", Eng. Struct., 24(8) 1015-1025. https://doi.org/10.1016/S0141-0296(02)00021-4.
- Li, X.L. and Ren, L.M. (2013), "Finite element analysis of wind turbine tower", Appl. Mech. Mater., 351-352, 825-828. https://doi.org/10.4028/www.scientific.net/AMM.351-352.825.
- Limam, M. (2011), "FE modelling of friction connections in tubular tower for wind turbines", Lapland University of Applied Sciences.
- Bucher, C. and Ebert, M. (2000), "Load carrying behavior of prestressed bolted steel flanges considering random geometrical imperfections", ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability.
- Wang, L., Kolios, A., Luengo, M.M. and Liu, X. (2016), "Structural optimisation of wind turbine towers based on finite element analysis and genetic algorithm", Wind Energy Sci. Discuss., https://doi.org/10.5194/wes-2016-41.
- Alvarez-Anton, L., Koob, M., Diaz, J. and Minnert, J. (2016), "Optimization of a hybrid tower for onshore wind turbines by Building Information Modeling and prefabrication techniques", Visualiz. Eng., 4(3). https://doi.org/10.1186/s40327-015-0032-4.
- Stanley, A.P.J., Ning, A. and Dykes, K. (2019), "Optimization of turbine design in wind farms with multiple hub heights, using exact analytic gradients and structural constraints", Wind Energy, 22(5). https://doi.org/10.1002/we.2310.
- Pons, O., Albert, D.L.F., Armengou, J. and Aguado, A. (2017), "Towards the sustainability in the design of wind towers", Energy Procedia, 115, 41-49. https://doi.org/10.1016/j.egypro.2017.05.005.
- Mathon, C. and Limam, A. (2006), "Experimental collapse of thin cylindrical shells submitted to internal pressure and pure bending", Thin-Wall. Struct., 44(1), 39-50. https://doi.org/10.1016/j.tws.2005.09.006.
- Repetto, M.P. and Solari, G. (2001), "Dynamic alongwind fatigue of slender vertical structures", Eng. Struct., 23(12), 1622-1633. https://doi.org/10.1016/S0141-0296(01)00021-9.
- DS Simulia Corp. (2013), ABAQUS Analysis User's Guide, Dassault Systemes (DS) Simulia Corp., RI, USA.
- DS Simulia Corp. (2013), ABAQUS/CAE User's Guide, Dassault Systemes (DS) Simulia Corp., RI, USA.
- DS Simulia Corp. (2013), ABAQUS Theory Guide, Dassault Systemes (DS) Simulia Corp., RI, USA.
- Mahdavi, G., Nasrollahzadeh, K. and Hariri-Ardebili, M.A. (2019), "Optimal FRP jacket placement in RC frame structures towards a resilient seismic design", Sustainability, 11(24), 6985. https://doi.org/10.3390/su11246985.
- Liu, C., Wu, X., Wakil, K., Jermsittiparsert, K., Ho, L.S., Alabduljabbar, H., Alaskar, A., Alrshoudi, F., Alyousef, R., and Mohamed, M. (2020), "Computational estimation of the earthquake response for fibre reinforced concrete rectangular columns", Steel Compos. Struct., 34(5), 743-767. https://doi.org/10.12989/scs.2020.34.5.743.
- Ahangarnazhad, B.H., Pourbaba, M. and Afkar, A. (2020), "Bond behavior between steel and Glass Fiber Reinforced Polymer (GFRP) bars and ultra high performance concrete reinforced by Multi-Walled Carbon Nanotube (MWCNT)", Steel Compos. Struct., 35(4), 463-474. https://doi.org/10.12989/scs.2020.35.4.463.
- China Academy of Building Research (2015), Design Code for Concrete Structures GB50010-2010, China Construction Industry Press 2016.
- Kang, T.H.-K., Wallace, J.W. and Elwood, K.J. (2009), "Nonlinear modeling of flat-plate systems", J. Struct. Eng., 135(2), 147-158. https://doi.org/10.1061/(ASCE)0733-9445(2009)135:2(147)