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THE FOCK-DIRICHLET SPACE AND THE

FOCK-NEVANLINNA SPACE

Hong Rae Cho∗ and Soohyun Park

Abstract. Let F 2 denote the space of entire functions f on C that
are square integrable with respect to the Gaussian measure dG(z) =
1
π
e−|z|2dA(z), where dA(z) = dxdy is the ordinary area measure. The

Fock-Dirichlet space F 2
D consists of all entire functions f with f ′ ∈ F 2.

We estimate Taylor coefficients of functions in the Fock-Dirichlet space.
The Fock-Nevanlinna space F 2

N consists of entire functions that possesses

just a bit more integrability than square integrability. In this note we

prove that F 2
D = F 2

N .

1. The Fock-Dirichlet space

We consider the Gaussian probability measure

dG(z) =
1

π
e−|z|2dA(z),

where dA(z) = dxdy is the ordinary area measure on C. We define

⟨f, g⟩ =
∫
C
f(z)g(z) dG(z).

Let F 2 denote the space of entire functions f such that the norm

∥f∥2 =

∫
C
|f(z)|2 dG(z)

is finite. The Fock space F 2 is the Hilbert space with the reproducing kernel
K(z, w) = ezw̄ (see [5]).

The Dirichlet energy is a measure of how variable a function is. The Dirichlet
energy of f in F 2 is defined by

Q(f, f) =

∫
C
|f ′(z)|2 dG(z).
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It is a quadratic functional on F 2.

Definition 1. The Fock-Dirichlet space F 2
D consists of all entire functions f

such that the Dirichlet energy Q(f, f) = ∥f ′∥2 is finite.

Remark 1. In fact, the Fock-Dirichlet space is a Fock-Sobolev space of order 1
(see [1], [2], [3]).

Let f be an entire function on C. Then we have the following power series

f(z) =

∞∑
n=0

anz
n.

Thus

∥f∥2 =

∞∑
n=0

|an|2n! and ∥f ′∥2 =

∞∑
n=1

n|an|2n!.

Therefore

∥f∥2 ≤ |f(0)|2 + ∥f ′∥2

and so F 2
D ⊂ F 2. However, the converse is not true. Every element f in F 2 is au-

tomatically infinitely differentiable, and f ′ is automatically entire again. Never-
theless, given f ∈ F 2, there is no reason that f ′ must be again square-integrable
with respect to dG. In fact, even though the function f(z) =

∑∞
n=0 anz

n with

an = (n!(n+1)2)−1/2 belongs to F 2, f ′ does not belong to F 2. Thus having f ′

be in F 2 is a nontrivial regularity condition on f .
Since F 2

D ⊂ F 2, we can define the Fock-Dirichlet norm ∥f∥D by

∥f∥2D = ∥f∥2 +Q(f, f).

Another possibility is to let

∥|f∥|2D = |f(0)|2 +Q(f, f).

Lemma 1.1.

f ∈ F 2
D if and only if zf(z) ∈ F 2.

Proof. Let f, g ∈ F 2
D. We define

Q(f, g) = ⟨f, g⟩D =

∫
C
f ′(z)g′(z) dG(z).

By the integration by parts, we know that∫
C
f ′(z)g(z) dG(z) =

∫
C
f(z)zg(z) dG(z).(1)

By (1), we have

⟨f, g⟩+Q(f, g) =

∫
C
|z|2f(z)g(z) dG(z) = ⟨zf, zg⟩.
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If we take f = g, then we have

∥zf∥2 = ∥f∥2 +Q(f, f) = ∥f∥2D.

Thus we get the result. □

Lemma 1.2.

⟨zm, zn⟩ =

{
n! if m = n

0 if m ̸= n.

Lemma 1.3.

⟨zm, zn⟩D =

{
(n+ 1)! if m = n

0 if m ̸= n.

Proof.

⟨zm, zn⟩D = ⟨zm, zn⟩+mn⟨zm−1, zn−1⟩.

□

Proposition 1.4. The reproducing kernel for F 2
D is given by

KD(z, w) =
1

zw̄
(ezw̄ − 1).

Proof. Since {zn/∥zn∥D} is an orthonormal basis for F 2
D, we have

KD(z, w) =

∞∑
n=0

zn

∥zn∥D
w̄n

∥wn∥D

=

∞∑
n=0

(zw̄)n

(n+ 1)!

=
1

zw̄
(ezw̄ − 1).

□

Note that

|f(z)|2 = |⟨f,KD(z, ·)⟩D|
≤ ∥f∥2D∥KD(z, ·)∥2D.

Here

∥KD(z, ·)∥2D = KD(z, z) =
1

|z|2
(e|z|

2

− 1).

Thus elements f of F 2
D satisfy the following pointwise bounds

|f(z)|2 ≤ e|z|
2 − 1

|z|2
∥f∥2D, z ∈ C.(2)
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2. Taylor coefficients of functions in the Fock-Dirichlet space

Theorem 2.1. Let f(z) =
∑

anz
n ∈ F 2

D be the Taylor series at the origin on
C. Then we have

|an| ≤
(

e

n+ 1

)n+1
2

∥f∥D, n ≥ 0.

Proof. Let r > 0. By Cauchy’s estimates and (2), Taylor coefficients an of f
satisfy

|an| ≤
1

2π

∫ 2π

0

|f(reiθ)|
rn

dθ

≤ e
r2

2

rn+1
∥f∥D.

We consider the function

h(r) =
e

r2

2

rn+1
.

Then

h′(r) = (r−(1+n)e
r2

2 )′

= −(1 + n)r−(1+n+1)e
r2

2 + rr−(1+n)e
r2

2

= r−(1+n)e
r2

2

{
−(n+ 1)r−1 + r

}
.

Thus it has its minimum value at r =
√
n+ 1, which implies that

|an| ≤
(

e

n+ 1

)n+1
2

∥f∥D, n ≥ 0.

□

3. The Fock-Nevanlinna space

Let

log+ x =

{
0 if 0 ≤ x ≤ 1,

log x if x > 1.

We define the Fock-Nevanlinna space F 2
N by

F 2
N =

{
f ∈ F 2 :

∫
C
|f(z)|2 log+ |f(z)| dG(z) < ∞

}
.

Lemma 3.1 (Young’s inequality). Let s, t ≥ 0. Then

st ≤ s log s− s+ et.(3)

Theorem 3.2.

F 2
D = F 2

N .
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Proof. Let f ∈ F 2
D. By using the inequality such that

|f(z)| ≤ e
1
2 |z|

2

∥f∥,
we have∫

C
|f(z)|2 log+ |f(z)| dG(z)− ∥f∥2 log+ ∥f∥ ≤ 1

2
∥zf∥2 =

1

2
∥f∥2D.

Hence F 2
D ⊂ F 2

N .
Let f ∈ F 2

N . For c > 1 if we choose s = c|f(z)|2, t = 1
c |z|

2, by Young’s
inequality (3.1), we have

∥f∥2D =

∫
C
|z|2|f(z)|2 dG(z)

≤ 2c

∫
C
|f(z)|2 log+ |f(z)| dG(z) + (c log c− c)∥f∥2 +

∫
C
e−(1−1/c)|z|2 dA

π
.

This means that if a function possesses just a bit more integrability than square
integrability, then the function has finite expected energy. Thus F 2

N ⊂ F 2
D. We

get the result. □

The concepts of the Dirichlet space and the Nevanlinna space have been
studied a lot in the unit disk [4]. In this study, the concepts of the Fock-
Dirichlet space and the Fock-Nevanlinna space in the entire complex plane were
introduced and simple results were obtained. Based on the presented ideas,
more advanced research will be conducted in future research.
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