East Asian Math. J. Vol. 38 (2022), No. 5, pp. 643–647 http://dx.doi.org/10.7858/eamj.2022.039

THE FOCK-DIRICHLET SPACE AND THE FOCK-NEVANLINNA SPACE

Hong Rae Cho* and Soohyun Park

ABSTRACT. Let F^2 denote the space of entire functions f on \mathbb{C} that are square integrable with respect to the Gaussian measure $dG(z) = \frac{1}{\pi}e^{-|z|^2}dA(z)$, where dA(z) = dxdy is the ordinary area measure. The Fock-Dirichlet space $F_{\mathcal{D}}^2$ consists of all entire functions f with $f' \in F^2$. We estimate Taylor coefficients of functions in the Fock-Dirichlet space. The Fock-Nevanlinna space $F_{\mathcal{N}}^2$ consists of entire functions that possesses just a bit more integrability than square integrability. In this note we prove that $F_{\mathcal{D}}^2 = F_{\mathcal{N}}^2$.

1. The Fock-Dirichlet space

We consider the Gaussian probability measure

$$dG(z) = \frac{1}{\pi} e^{-|z|^2} dA(z),$$

where dA(z) = dxdy is the ordinary area measure on \mathbb{C} . We define

$$\langle f,g\rangle = \int_{\mathbb{C}} f(z)\overline{g(z)} \, dG(z).$$

Let F^2 denote the space of entire functions f such that the norm

$$||f||^2 = \int_{\mathbb{C}} |f(z)|^2 dG(z)$$

is finite. The Fock space F^2 is the Hilbert space with the reproducing kernel $K(z, w) = e^{z\bar{w}}$ (see [5]).

The Dirichlet energy is a measure of how variable a function is. The Dirichlet energy of f in F^2 is defined by

$$Q(f,f) = \int_{\mathbb{C}} |f'(z)|^2 \, dG(z).$$

*Corresponding author.

©2022 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received June 7, 2022; Accepted September 30, 2022.

²⁰¹⁰ Mathematics Subject Classification. 30H20.

Key words and phrases. Fock-Dirichlet space, Fock-Nevanlinna space.

This work was financially supported by a 2-Year Research Grant of Pusan National University.

It is a quadratic functional on F^2 .

Definition 1. The Fock-Dirichlet space $F_{\mathcal{D}}^2$ consists of all entire functions f such that the Dirichlet energy $Q(f, f) = ||f'||^2$ is finite.

Remark 1. In fact, the Fock-Dirichlet space is a Fock-Sobolev space of order 1 (see [1], [2], [3]).

Let f be an entire function on \mathbb{C} . Then we have the following power series

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

Thus

$$||f||^2 = \sum_{n=0}^{\infty} |a_n|^2 n!$$
 and $||f'||^2 = \sum_{n=1}^{\infty} n|a_n|^2 n!$.

Therefore

$$||f||^2 \le |f(0)|^2 + ||f'||^2$$

and so $F_{\mathcal{D}}^2 \subset F^2$. However, the converse is not true. Every element f in F^2 is automatically infinitely differentiable, and f' is automatically entire again. Nevertheless, given $f \in F^2$, there is no reason that f' must be again square-integrable with respect to dG. In fact, even though the function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ with $a_n = (n!(n+1)^2)^{-1/2}$ belongs to F^2 , f' does not belong to F^2 . Thus having f' be in F^2 is a nontrivial regularity condition on f.

Since $F_{\mathcal{D}}^2 \subset F^2$, we can define the Fock-Dirichlet norm $||f||_{\mathcal{D}}$ by

$$||f||_{\mathcal{D}}^2 = ||f||^2 + Q(f, f).$$

Another possibility is to let

$$|||f|||_{\mathcal{D}}^2 = |f(0)|^2 + Q(f, f).$$

Lemma 1.1.

$$f \in F_{\mathcal{D}}^2$$
 if and only if $zf(z) \in F^2$.

Proof. Let $f, g \in F_{\mathcal{D}}^2$. We define

$$Q(f,g) = \langle f,g \rangle_{\mathcal{D}} = \int_{\mathbb{C}} f'(z) \overline{g'(z)} \, dG(z).$$

By the integration by parts, we know that

(1)
$$\int_{\mathbb{C}} f'(z)\overline{g(z)} \, dG(z) = \int_{\mathbb{C}} f(z)\overline{zg(z)} \, dG(z).$$

By (1), we have

$$\langle f,g \rangle + Q(f,g) = \int_{\mathbb{C}} |z|^2 f(z)\overline{g(z)} \, dG(z) = \langle zf,zg \rangle.$$

If we take f = g, then we have

$$||zf||^2 = ||f||^2 + Q(f, f) = ||f||_{\mathcal{D}}^2$$

Thus we get the result.

Lemma 1.2.

$$\langle z^m, z^n \rangle = \begin{cases} n! & \text{if } m = n \\ 0 & \text{if } m \neq n. \end{cases}$$

Lemma 1.3.

$$\langle z^m, z^n \rangle_{\mathcal{D}} = \begin{cases} (n+1)! & \text{if } m=n\\ 0 & \text{if } m \neq n. \end{cases}$$

Proof.

$$\langle z^m, z^n \rangle_{\mathcal{D}} = \langle z^m, z^n \rangle + mn \langle z^{m-1}, z^{n-1} \rangle$$

Proposition	1.4.	The a	reproducing	kernel	for	$F_{\mathcal{D}}^2$	is	given	by
-------------	------	---------	-------------	--------	-----	---------------------	----	-------	----

$$K_{\mathcal{D}}(z,w) = \frac{1}{z\bar{w}}(e^{z\bar{w}} - 1).$$

Proof. Since $\{z^n/||z^n||_{\mathcal{D}}\}$ is an orthonormal basis for $F_{\mathcal{D}}^2$, we have

$$K_{\mathcal{D}}(z,w) = \sum_{n=0}^{\infty} \frac{z^n}{\|z^n\|_{\mathcal{D}}} \frac{\bar{w}^n}{\|w^n\|_{\mathcal{D}}}$$
$$= \sum_{n=0}^{\infty} \frac{(z\bar{w})^n}{(n+1)!}$$
$$= \frac{1}{z\bar{w}} (e^{z\bar{w}} - 1).$$

Note that

$$|f(z)|^{2} = |\langle f, K_{\mathcal{D}}(z, \cdot) \rangle_{\mathcal{D}}|$$

$$\leq ||f||_{\mathcal{D}}^{2} ||K_{\mathcal{D}}(z, \cdot)||_{\mathcal{D}}^{2}.$$

Here

$$||K_{\mathcal{D}}(z,\cdot)||_{\mathcal{D}}^2 = K_{\mathcal{D}}(z,z) = \frac{1}{|z|^2}(e^{|z|^2}-1).$$

Thus elements f of $F_{\mathcal{D}}^2$ satisfy the following pointwise bounds

(2)
$$|f(z)|^2 \le \frac{e^{|z|^2} - 1}{|z|^2} ||f||_{\mathcal{D}}^2, \quad z \in \mathbb{C}.$$

645

2. Taylor coefficients of functions in the Fock-Dirichlet space

Theorem 2.1. Let $f(z) = \sum a_n z^n \in F_D^2$ be the Taylor series at the origin on \mathbb{C} . Then we have

$$|a_n| \le \left(\frac{e}{n+1}\right)^{\frac{n+1}{2}} \|f\|_{\mathcal{D}}, \quad n \ge 0.$$

Proof. Let r > 0. By Cauchy's estimates and (2), Taylor coefficients a_n of f satisfy

$$|a_n| \le \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(re^{i\theta})|}{r^n} d\theta$$
$$\le \frac{e^{\frac{r^2}{2}}}{r^{n+1}} ||f||_{\mathcal{D}}.$$

We consider the function

$$h(r) = rac{e^{rac{r^2}{2}}}{r^{n+1}}.$$

Then

$$\begin{split} h'(r) &= (r^{-(1+n)}e^{\frac{r^2}{2}})' \\ &= -(1+n)r^{-(1+n+1)}e^{\frac{r^2}{2}} + rr^{-(1+n)}e^{\frac{r^2}{2}} \\ &= r^{-(1+n)}e^{\frac{r^2}{2}}\left\{-(n+1)r^{-1} + r\right\}. \end{split}$$

Thus it has its minimum value at $r = \sqrt{n+1}$, which implies that

$$|a_n| \le \left(\frac{e}{n+1}\right)^{\frac{n+1}{2}} \|f\|_{\mathcal{D}}, \quad n \ge 0.$$

_ 1
_ 1
_ 1

3. The Fock-Nevanlinna space

Let

$$\log^+ x = \begin{cases} 0 & \text{if } 0 \le x \le 1, \\ \log x & \text{if } x > 1. \end{cases}$$

We define the Fock-Nevanlinna space $F_{\mathcal{N}}^2$ by

$$F_{\mathcal{N}}^{2} = \left\{ f \in F^{2} : \int_{\mathbb{C}} |f(z)|^{2} \log^{+} |f(z)| \, dG(z) < \infty \right\}.$$

Lemma 3.1 (Young's inequality). Let $s, t \ge 0$. Then (3) $st \le s \log s - s + e^t$.

Theorem 3.2.

$$F_{\mathcal{D}}^2 = F_{\mathcal{N}}^2$$

646

647

Proof. Let $f \in F_{\mathcal{D}}^2$. By using the inequality such that

$$|f(z)| \le e^{\frac{1}{2}|z|^2} ||f||$$

we have

$$\int_{\mathbb{C}} |f(z)|^2 \log^+ |f(z)| \, dG(z) - \|f\|^2 \log^+ \|f\| \le \frac{1}{2} \|zf\|^2 = \frac{1}{2} \|f\|_{\mathcal{D}}^2$$

Hence $F_{\mathcal{D}}^2 \subset F_{\mathcal{N}}^2$.

Let $f \in F_{\mathcal{N}}^{2}$. For c > 1 if we choose $s = c|f(z)|^2$, $t = \frac{1}{c}|z|^2$, by Young's inequality (3.1), we have

$$\begin{split} \|f\|_{\mathcal{D}}^2 &= \int_{\mathbb{C}} |z|^2 |f(z)|^2 \, dG(z) \\ &\leq 2c \int_{\mathbb{C}} |f(z)|^2 \log^+ |f(z)| \, dG(z) + (c \log c - c) \|f\|^2 + \int_{\mathbb{C}} e^{-(1 - 1/c)|z|^2} \, \frac{dA}{\pi}. \end{split}$$

This means that if a function possesses just a bit more integrability than square integrability, then the function has finite expected energy. Thus $F_{\mathcal{N}}^2 \subset F_{\mathcal{D}}^2$. We get the result.

The concepts of the Dirichlet space and the Nevanlinna space have been studied a lot in the unit disk [4]. In this study, the concepts of the Fock-Dirichlet space and the Fock-Nevanlinna space in the entire complex plane were introduced and simple results were obtained. Based on the presented ideas, more advanced research will be conducted in future research.

References

- H. R. Cho, B. R. Choe and H. Koo, Fock-Sobolev spaces of fractional order, Potential Anal. 43 (2015), 199-240.
- [2] H. R. Cho and S. Park, Fractional Fock-Sobolev spaces, Nagoya Math. J., 237 (2020), 79-97.
- [3] H. R. Cho and K. Zhu, Fock-Sobolev spaces and their Carleson measures, J. Funct. Anal. 263 (2012), no. 8, 2483-2506.
- [4] K. Zhu, Operator theory in function spaces. Monographs and Textbooks in Pure and Applied Mathematics, 139. Marcel Dekker, Inc., New York, 1990. xii+258 pp.
- [5] K. Zhu, Analysis on Fock spaces, Graduate Texts in Mathematics, 263, Springer, New York, 2012, x+344 pp.

Hong Rae Cho

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, 2, BUSANDAEHAK-RO 63BEON-GIL, GEUMJEONG-GU, BUSAN, 46241, REP. OF KOREA

Email address: chohr@pusan.ac.kr

SOOHYUN PARK

DEPARTMENT OF MATHEMATICS, PUSAN NATIONAL UNIVERSITY, 2, BUSANDAEHAK-RO 63BEON-GIL, GEUMJEONG-GU, BUSAN, 46241, REP. OF KOREA

Email address: shpark7@pusan.ac.kr