DOI QR코드

DOI QR Code

질소 플라즈마의 화장품 가능성 평가

Evaluation of the Potential of Nitrogen Plasma to Cosmetics

  • 이소민 (아주대학교 생명과학과) ;
  • 정소영 (아주대학교 응용생명공학과) ;
  • ;
  • 허효진 (아주대학교 응용생명공학과) ;
  • 차병선 (아주대학교 생명과학과) ;
  • ;
  • 이상훈 (아주대학교 생명과학과) ;
  • 이미기 (경기도경제과학진흥원) ;
  • 빈범호 (아주대학교 생명과학과) ;
  • 곽병문 (아주대학교 생명과학과)
  • Lee, So Min (Department of Applied Biotechnology, Ajou University) ;
  • Jung, So Young (Department of Applied Biotechnology, Ajou University) ;
  • Brito, Sofia (Department of Applied Biotechnology, Ajou University) ;
  • Heo, Hyojin (Department of Applied Biotechnology, Ajou University) ;
  • Cha, Byungsun (Department of Applied Biotechnology, Ajou University) ;
  • Lei, Lei (Department of Applied Biotechnology, Ajou University) ;
  • Lee, Sang Hun (Department of Applied Biotechnology, Ajou University) ;
  • Lee, Mi-Gi (GBSA, Gyeonggido Business and Science Accelerator) ;
  • Bin, Bum-Ho (Department of Applied Biotechnology, Ajou University) ;
  • Kwak, Byeong-Mun (Department of Applied Biotechnology, Ajou University)
  • 투고 : 2022.05.24
  • 심사 : 2022.09.04
  • 발행 : 2022.09.30

초록

플라즈마란 고체, 액체, 기체에 이은 "4번째 상"으로서 이온화된 기체를 의미한다. 주로 용접과 네온사인에 응용 및 사용되어 왔으나, 최근 암 치료 등 의료 분야에도 적용되고 있으며, 피부에서는 콜라겐 생성 촉진, 피부 톤 개선, 피부 유해균 사멸 등 다양한 효과가 보고되고 있다. 본 연구는 대기의 주성분인 질소를 활용한 화장품 제조용 플라즈마 기기를 통해 질소 플라즈마 활성종 중, 추적 평가가 용이한 nitric oxide (NO)의 양을 측정하여 플라즈마의 양적/질적 평가를 진행하였다. 효율적인 플라즈마 처리를 위해 sinking과 non sinking 법을 활용한 주입 방법을 시도한 결과, non sinking 법을 활용한 제형의 근접 처리가 효과적임을 확인할 수 있었다. 나아가 토너와 앰플을 화장품 제형으로 선택하여 NO 플라즈마 주입 후 제형의 성상 및 주입한 플라즈마의 상태 변화를 관찰하였다. 두 제형에서 NO 플라즈마의 주입 성공량은 토너가 앰플보다 약 2 배 가량 높았으며, 시간에 따라 점진적으로 감소하여 일주일 후, 소실되는 것이 확인되었다. 사용된 질소 플라즈마는 저온(4 ℃), 실온(25 ℃), 고온(37 ℃, 50 ℃) 조건에서 토너와 앰플 제형의 안정도에 영향을 미치지 않는 것을 확인하였다. 종합적으로, 본 연구는 질소 플라즈마의 화장품 가능성을 제시하고 있으며 주입된 플라즈마의 안정성 확보의 중요성을 시사하고 있다.

Plasma refers to an ionized gas that is often referred to as "the fourth phase of matter", following solid, liquid, and gas. Plasma has traditionally been utilized for industrial applications such as welding and neon signs, but its promise in biomedical fields such as cancer treatment and dermatology has lately been recognized. Indeed, due to its beneficial effects in promoting collagen production, improving skin tone, and eliminating harmful bacteria in the skin, plasma treatment constitutes an important target for dermatological research. In this study, a plasma device for cosmetic manufacturing based on nitrogen, the main component of the atmosphere, was designed and assembled. Moreover, nitric oxide (NO) was selected since is easier to follow and evaluate than other nitrogen plasma active species, and its contents were measured to perform a quantitative and qualitative evaluation of plasma. First, an injection method, using different proximities labeled "sinking" and "non sinking" treatments, was performed to test the most efficient plasma treatment method. As a result, it was observed that the formulation obtained by a non sinking treatment was more effective. Furthermore, toner and ampoule were selected as cosmetics formulations, and the characteristics of the formulation and changes in the injected plasma state were observed. In both formulations, the successful injection of NO plasma was 2 times higher in toner formulation than ampoule formulation, and it gradually decreased with time, having dissipated after a week. It was confirmed that the nitrogen plasma used did not affect the stability of the toner and ampoule formulations at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃ and 50 ℃) conditions. The results of this study demonstrate the potential of plasma cosmetics and highlight the importance of securing the stability of the injected plasma.

키워드

과제정보

This research was supported by a grant from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (No. 2019005607 to B. H.B. and NRF-2021R1I1A1A01053991 to B. M.K), the Ajou University Research Fund (to B. H.B.), a grant provided by the Korea Initiative for fostering University of Research and Innovation Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. NRF2021M3H1A104892211; to B. H.B. and B. M.K.), the Gyeonggido Business & Science Accelerator (GBSA) grant and the project (to B.-H.B and B.-M.K) and a grant provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF 2021R1A6A1A10044950; to B. H.B and B. M.K).

참고문헌

  1. N. K. Kaushik, B. Ghimire, Y. Li, M. Adhikari, M. Veerana, N. Kaushik, N. Jha, B. Adhikari, S. J. Lee, and K. Masur, Biological and medical applications of plasma-activated media, water and solutions, Biol. Chem., 400(1), 39 (2019). https://doi.org/10.1515/hsz-2018-0226
  2. R. J. Goldston and P. H. Rutherford, Introduction to Plasma Physics, ed. C. V. Meister, 1, CRC Press, New York Washington, D.C. (2020).
  3. H. S. Uhm, Atmospheric plasma and its applications, Appl. Sci. Converg. Technol., 15(2), 117 (2006).
  4. A. Ananth, M. S. Gandhi, and Y. S. Mok, A dielectric barrier discharge (DBD) plasma reactor: an efficient tool to prepare n ovel RuO2 n an orods, J. Phys. D. Appl. Phys., 46(15), 155202 (2013). https://doi.org/10.1088/0022-3727/46/15/155202
  5. X. Deng, J. Shi, and M. G. Kong, Physical mechanisms of inactivation of bacillus subtilis spores using cold atmospheric plasmas, IEEE Trans. Plasma Sci. IEEE Nucl. Plasma Sci. Soc., 34(4), 1310 (2006). https://doi.org/10.1109/TPS.2006.877739
  6. M. M. Calsgrierson and A. D. Ormerod, Nitric oxide fun ction in the ton er, Nitric Oxide., 10(4), 179 (2004). https://doi.org/10.1016/j.niox.2004.04.005
  7. S. Kumar, R. K. Singh, and T. R. Bhardwaj, Therapeutic role of nitric oxide as emerging molecule, Biomed. Pharmacother., 85(1), 182 (2017). https://doi.org/10.1016/j.biopha.2016.11.125
  8. Y. S. Lee, Role of n itric oxide in the TRPV1-mediated melanogenesis, Yakhak Hoeji, 64(5), 387 (2020). https://doi.org/10.17480/psk.2020.64.5.387
  9. H. S. Choi, E. M. You, E. H. Choi, K. N. Kim, and K. M. Kim, Effect of atmospheric pressure cold plasma on tooth bleaching and enamel surface roughness, Kor. J. Dent. Mater., 40(1), 51 (2013).
  10. S. H. Uhm, J. S. Kwon , J. H. Lee, E. J. Lee, an d K. N. Kim, Application s of n on -thermal atmospheric pressure plasma in dentistry, J. K. D. A., 52(12), 783 (2014).
  11. S. R. Park, J. W. Hong, H. J. Lee, and G. C. Kim, Plasma medicin e; how can n on thermal atmospheric plasma be applied to medicine?, J. Life Sci., 23(6), 838 (2013). https://doi.org/10.5352/JLS.2013.23.6.838
  12. F. Gregory, P. Marie, B. Manjula, A. Halim, F. Alexan der, G. Alexan der, an d B. Ari, Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air, Plasma Chem. Plasma Process., 26(4), 425 (2006). https://doi.org/10.1007/s11090-006-9024-4
  13. D. B. Graves, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology, J. Phys. D. Appl. Phys., 45(26), 263001 (2012). https://doi.org/10.1088/0022-3727/45/26/263001
  14. G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, and A. Fridman, Applied plasma medicine, Plasma Processes Polym., 5(6), 503 (2008). https://doi.org/10.1002/ppap.200700154
  15. S. H. Lee, M. S. Yoon, and N. H. Jeong, Properties of antifoaming agent using long chain fatty acid esters, Journal of Industrial Science and Technology Institute, 33(1), 17 (2019). https://doi.org/10.54726/JISTI.33.1.4
  16. J. S. Kim and J. C. Lim, Effect of pH on physical properties of triethanolamine-ester quaternary ammonium salt cationic surfactant system, Appl. Chem. Eng., 20(5), 479 (2009).
  17. L. C. Green , D. A. Wagn er, J. Glogowski, P. L. Skipper, J. S. Wishnok, and S. R. Tannenbaum, Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids, Anal. Biochem., 126(1), 131 (1982). https://doi.org/10.1016/0003-2697(82)90118-X
  18. H. Moshage, B. Kok, J. R. Huizen ga, an d P. L. Jan sen , Nitrite and nitrate determinations in plasma: a critical evaluation, Clin. Chem., 41(6), 892 (1995). https://doi.org/10.1093/clinchem/41.6.892
  19. Z. Chen, Y. E. Krasik, S. Cousens, A. T. Ambujakshan, C. Corr, an d X. J. Dai, Gen eration of un derwater discharges inside gas bubbles using a 30-needles-to-plate electrode, J. Appl. Phys., 122(15), 153303 (2017). https://doi.org/10.1063/1.4993497
  20. H. S. Kim, K. C. Wright, I. W. Hwan g, D. H. Lee, A. Rabinovich, A. Fridman, and Y. I. Cho, Concentration of hydrogen peroxide generated by gliding arc discharge and inactivation of E. coli in water, Int. Commun. Heat and Mass Transf., 42(1), 5 (2013). https://doi.org/10.1016/j.icheatmasstransfer.2012.12.004
  21. M. Q. Man, J. S. Wakefield, T. M. Mauro, and P. M. Elias, Role of nitric oxide in regulating epidermal permeability barrier function, Exp. Dermatol., 31(3), 290 (2022). https://doi.org/10.1111/exd.14470
  22. S. Zhang, A. Rousseau, and T. Dufour, Promoting lentil germination and stem growth by plasma activated tap water, demineralized water and liquid fertilizer, RSC Adv., 7(50), 31244 (2017) https://doi.org/10.1039/C7RA04663D