DOI QR코드

DOI QR Code

Effects of Filler Types and Content on Shrinkage Behavior of Polypropylene Composites

  • Jung, Chun-Sik (Materials Chemistry and Engineering Laboratory, Department of Polymer Science and Engineering, Dankook University) ;
  • Hwang, Seok-Ho (Materials Chemistry and Engineering Laboratory, Department of Polymer Science and Engineering, Dankook University)
  • 투고 : 2022.09.12
  • 심사 : 2022.09.21
  • 발행 : 2022.09.30

초록

The effects of fillers [talc, calcium carbonate, glass fiber, and EBR (ethylene-butene rubber)] on the shrinkage and mechanical properties of injection-molded polypropylene composites were investigated. The shrinkage correlated with the shape of the filler particles: at the same amount added, glass fibers with a large aspect ratio had the greatest effect on the shrinkage of polypropylene composites, followed by flake-shaped talc and granular calcium carbonate. It was confirmed that the addition of EBR rubber as an impact strength modifier reduced shrinkage proportionally to the added content. In addition, the addition of glass fiber resulted in the greatest increases in tensile and flexural strengths.

키워드

과제정보

본 연구는 산업통상자원부의 "소재부품기술개발사업"(태양광 모듈용 고투과 열가소성 탄성소재, 과제번호: 20012770)의 지원을 받아 수행되었으며 이에 감사드립니다.

참고문헌

  1. B. H. Lee, D. S. Jeong, C. W. Kim, S. H. Park, and Y. C. Kim, "Influence of the Chemical Treatment of Bamboo Fiber (BF) on Physical Properties of BF and PP/BF Composites", Appl. Chem. Eng., 29, 168 (2018). https://doi.org/10.14478/ACE.2017.1118
  2. D. Kang, S. Oh, and H. I. Kim, "Improvement of Physical Properties of Polypropylene Chemical Foam by Glass Fiber Reinforcement", Polym. Korea, 43, 589 (2019). https://doi.org/10.7317/pk.2019.43.4.589
  3. J. I. Lee, J. W. Bae, S. L. Kim, J. E. Hong, and B. U. Nam, "Study on Impact Resistance, Wear Resistance and Crystallization Kinetics of Polypropylene Modified by Complex Crosslinkers", Polym. Korea, 44, 603 (2020). https://doi.org/10.7317/pk.2020.44.5.603
  4. Y. J. Ju, Y. C. Kwon, and H. S. Choi, "Study on the Suitability of Composite Materials for Enhancement of Automotive Fuel Economy", Compos. Res., 32, 284 (2019). https://doi.org/10.7234/composres.2019.32.5.284
  5. M. A. Ali, A. Abdullah, S. Dahaman, A. Amin, and S. Mansor, "Review the Mechanical Properties of Reinforcing Agents in Polypropylene Matrix of Car Bumper", ARPN J. Eng. Appl. Sci., 12, 4209 (2017).
  6. Y. S. Kim, S. G. Ku, D. W. Kim, K. S. Kim, and Y. C. Kim, "Effect of the Felt Fabrication Direction on the Physical Properties of Polypropylene-Poly(ethylene terephthalate)/ Kenaf Felt Composites", Polym. Korea, 42, 695 (2018). https://doi.org/10.7317/pk.2018.42.4.695
  7. K. Palanikumar, R. Ashok Gandhi, B. K. Raghunath, and V. Jayaseelan, "Role of Calcium Carbonate(CaCO3) in Improving Wear Resistance of Polypropylene(PP) Components Used in Automobils", Mater. Today: Proc., 16, 1363 (2019). https://doi.org/10.1016/j.matpr.2019.05.237
  8. J. Zhao, Y. Qiao, G. Wang, C. Wang, and C. B. Park, "Lightweight and Tough PP/talc Composite Foam with Bimodal Nanoporous Structure Achieved by Microcellular Injection Molding", Mater. Des., 195, 109051 (2020). https://doi.org/10.1016/j.matdes.2020.109051
  9. A. Layachi, A. Makhlouf, D. Frihi, H. Satha, A. Belaadi, and R. Seguela, "Non-isothermal Crystallization Kinetics and Nucleation Behavior of Isotactic Polypropylene Composites with Micro-talc", J. Therm. Anal. Calorim., 138, 1081 (2019). https://doi.org/10.1007/s10973-019-08262-0
  10. J. Ding, W. Ma, F. Song, and Q. Zhong, "Effect of Nano-Calcium Carbonate on Microcellular Foaming of Polypropylene", J. Mater. Sci., 48, 2504 (2013). https://doi.org/10.1007/s10853-012-7039-1
  11. K. A. Lyer, and J. M. Torkelson, "Green Composites of Polypropylene and Eggshell: Effective Biofiller Size Reduction and Dispersion by Single-Step Processing with Solid-state Shear Pulverization", Compos. Sci. Technol., 102, 152 (2014). https://doi.org/10.1016/j.compscitech.2014.07.029
  12. Y. Wang, L. Cheng, X. Cui, and W. Guo, "Crystallization Behavior and Properties of Glass Fiber Reinforced Polypropylene Composites", Polymers, 11, 1198 (2019). https://doi.org/10.3390/polym11071198
  13. Q. T. H. Shubhra, A. K. M. M. Alam, and M. A. Quaiyyum, "Mechanical Properties of Polypropylene Composites: A Review", J. Thermplat. Compos. Mater., 26, 362 (2011).
  14. A. M. Elhousari, M. Rashad, A. H. Elsheikh, and M. Dewidar, "The Effect of Rubber Powder Additives on Mechanical Properties of Polypropylene Glass-fiber-reinforced Composite", Mech. Sci., 12, 461 (2021). https://doi.org/10.5194/ms-12-461-2021
  15. L.-F. Ma, R.-Y. Bao, R. Dou, S.-D. Zheng, Z.-Y. Liu, R.-Y. Zhang, M.-B. Yang, and W. Yang, "Conductive Thermoplastic Vulcanizates (TPVs) based on Polypropylene (PP)/ethylene-propylene-diene Rubber (EPDM) Blend: From Strain Sensor to Highly Stretchable Conductor", Compos. Sci. Technol, 128, 176 (2016). https://doi.org/10.1016/j.compscitech.2016.04.001
  16. A. R. Kakroodi, and D. Rodrigue, "Impact Modification of Polypropylene-based Composites using Surface-coated Waste Rubber Crumb", Polym. Compos., 35, 2280 (2014). https://doi.org/10.1002/pc.22893
  17. M.-Y. Lyu, J.-H. Mo, and W.-J. Jeong, "Shrinkage in Injection Molded Part for Operational Conditions and Resins", Elast. Compos., 38, 295 (2003).
  18. S. Han, and K. K. Wang, "Shrinkage Prediction for Slowlycrystallizing Thermoplastic Polymer in Injection Moulding", Int. Polym. Proc., 12, 228 (1997). https://doi.org/10.3139/217.970228
  19. R. Pantani, and G. Titimanlio, "Analysis of Shrinkage Development of Injection Moulded PS Samples", Int. Polym. Proc., 16, 183 (1999). https://doi.org/10.3139/217.1640
  20. R. Pantani, J. M. B. Jansen, and G. Titomanlio, "In-moulded Shrinkage Measurements of PS Samples with Strain Gages", Int. Polym. Proc., 12, 396 (1997). https://doi.org/10.3139/217.970396
  21. F. W. Billmeyer, Jr., "Textbook of Polymer Science", p. 457, John Wiley & Sons, New York, 1984.
  22. H. Park, H. Sim, H.-K. Oh, G.-H. Lee, M.-A. Kang, and M.- Y. Lyu, "Experimental and Computational Study on the Mold Shrinkage of PPS Resin in Injection Molded Specimen", Elast. Compos., 55, 120 (2020). https://doi.org/10.7473/EC.2020.55.2.120
  23. Y. Zhou, and P. K. Mallic, "Effects of Temperature and Strain Rate on the Tensile Behavior of Unfilled and Talc-filled Polypropylene, Part1", Polym. Eng. Sci., 42, 2449 (2002). https://doi.org/10.1002/pen.11131
  24. J. L. Thomason, and M. A. Vlug, "Influence of Fibre Length and Concentration on the Properties of Glass Fibre-reinforced Polypropylene, 1. Tensile and Flexural Modulus", Compos. Part A, 27A, 477 (1996).
  25. S. Fu, B. Lauke, E. Mader, C. Yue, X. Hu, and Y. Mai, "Hybrid Effects on Tensile Properties of Hybrid Short-glassfiber- and Short-carbon-fiber-reinforced Polypropylene Composites", J. Mater. Sci., 36, 1243 (2001). https://doi.org/10.1023/a:1004802530253
  26. C. Zweben, "Tensile Strength of Hybrid Composites", J. Mater. Sci., 12, 1325 (1977). https://doi.org/10.1007/BF00540846
  27. H. Fukuda, "An Advanced Theory of the Strength of Hybrid Composites", J. Mater. Sci., 19, 974 (1983). https://doi.org/10.1007/BF00540468
  28. S. Y. Kim, H. M. Kim, D. J. Lee, J. R. Youn, and S. H. Lee, "Fiber Orientation and Warpage of Film Insert Molded Parts with Glass Fiber Reinforced Substrate", J. Korea Soc. Compos. Mater., 25, 117 (2012). https://doi.org/10.7234/kscm.2012.25.4.117
  29. S. Kim, D. Son, D. Choi, I. Jeong, Y.-B. Park, and S. Y. Kim, "Development of a Prediction Model for the Mechanical Properties of Polypropylene Composites Reinforeced by Talc and Short Glass Fibers", Compos. Res., 26, 245 (2013). https://doi.org/10.7234/composres.2013.26.4.245
  30. S. N. Maiti and K. K. Sharma, "Studies on Polypropylene Composites Filled with Talc Particles, Part 1: Mechanical Properties", J. Mater. Sci., 27, 4605 (1992). https://doi.org/10.1007/BF01165994