Acknowledgement
This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (D-747-135-1443). The authors, therefore, acknowledge with thanks DSR technical and financial support.
References
- Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A. M. and Hendi, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
- Abdelrahman, A.A., Mohamed, N.A. and Eltaher, M. A. (2020a), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. Comput., 1-21. https://doi.org/10.1007/s00366-020-01149-x.
- Abdelrahman, A.A., Abd El Mottaleb, H.E. and Eltaher, M.A. (2020b), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6), 765-779. https://doi.org/10.12989/sem.2020.76.6.765.
- Abdelrahman, A.A., Esen, I. and Eltaher, M.A. (2021a), "Vibration response of Timoshenko perforated microbeams under accelerating load and thermal environment", Appl. Mathem. Comput., 407, 126307. https://doi.org/10.1016/j.amc.2021.126307.
- Abdelrahman, A.A., Esen, I., Ozarpa, C., Shaltout, R., Eltaher, M. A. and Assie, A.E. (2021b), "Dynamics of perforated higher order nanobeams subject to moving load using the nonlocal strain gradient theory", Smart Struct. Syst., 28(4), 515-533. https://doi.org/10.12989/sss.2021.28.4.515.
- Alazwari, M.A., Daikh, A.A., Houari, M.S.A., Tounsi, A. and Eltaher, M.A. (2021), "On static buckling of multilayered carbon nanotubes reinforced composite nanobeams supported on non-linear elastic foundations", Steel Compos. Struct., 40(3), 389-404. https://doi.org/10.12989/scs.2021.40.3.389.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structures, 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020b), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
- Ansari, R. and Sahmani, S. (2011), "Bending behavior and buckling of nanobeams including surface stress effects corresponding to different beam theories", Int. J. Eng. Sci., 49(11), 1244-1255. https://doi.org/10.1016/j.ijengsci.2011.01.007.
- Arefi, M., Pourjamshidian, M. and Arani, A.G. (2019), "Dynamic instability region analysis of sandwich piezoelectric nano-beam with FG-CNTRCs face-sheets based on various high-order shear deformation and nonlocal strain gradient theory", Steel Compos. Struct., 32(2), 157-171. https://doi.org/10.12989/scs.2019.32.2.151.
- Assie, A., Akbas, S.D., Bashiri, A.H., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Vibration response of perforated thick beam under moving load", Europ. Phys. J. Plus, 136(3), 1-15. https://doi.org/10.1140/epjp/s13360-021-01224-2.
- Babaei, H. and Eslami, M.R. (2021), "Study on nonlinear vibrations of temperature-and size-dependent FG porous arches on elastic foundation using nonlocal strain gradient theory", Europ. Phys. J. Plus, 136(1), 1-28. https://doi.org/10.1140/epjp/s13360-020-00959-8.
- Bourouina, H., Yahiaoui, R., Sahar, A. and Benamar, M.E.A. (2016), "Analytical modeling for the determination of nonlocal resonance frequencies of perforated nanobeams subjected to temperature-induced loads", Physica E, 75, 163-168. https://doi.org/10.1016/j.physe.2015.09.014.
- Bourouina, H., Yahiaoui, R., Kerid, R., Ghoumid, K., Lajoie, I., Picaud, F. and Herlem, G. (2020), "The influence of hole networks on the adsorption-induced frequency shift of a perforated nanobeam using non-local elasticity theory", J. Phys. Chemistry Solids, 136, 109201. https://doi.org/10.1016/j.jpcs.2019.109201.
- Chan, J., Eichenfield, M., Camacho, R. and Painter, O. (2009), "Optical and mechanical design of a "zipper" photonic crystal optomechanical cavity", Optics Express, 17(5), 3802-3817. https://doi.org/10.1364/OE.17.003802.
- Chen, S.X., Sahmani, S. and Safaei, B. (2021), "Size-dependent nonlinear bending behavior of porous FGM quasi-3D microplates with a central cutout based on nonlocal strain gradient isogeometric finite element modelling", Eng. Comput., 37(2), 1657-1678. https://doi.org/10.1007/s00366-021-01303-z.
- Daikh, A.A., Drai, A., Houari, M.S.A. and Eltaher, M.A. (2020), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36(6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.
- Daikh, A.A., Houari, M.S.A., Karami, B., Eltaher, M.A., Dimitri, R. and Tornabene, F. (2021), "Buckling analysis of CNTRC curved sandwich nanobeams in thermal environment", Appl. Sci., 11(7), 3250. https://doi.org/10.3390/app11073250.
- Diyaroglu, C., Madenci, E. and Phan, N.D. (2020), "Peridynamic modeling of perforated structures in a finite element framework", In AIAA Scitech., 0967.
- Dougherty, B.K. (1981), "Buckling of web posts in perforated beams", J. Struct. Div., 107(3), 507-519. https://doi.org/10.1061/JSDEAG.0005661.
- Duan, L., Zhao, J. and Zou, J. (2022), "Generalized beam theorybased advanced beam finite elements for linear buckling analyses of perforated thin-walled members", Comput. Struct., 259, 106683. https://doi.org/10.1016/j.compstruc.2021.106683.
- Eltaher, M.A., Kabeel, A.M., Almitani, K.H. and Abdraboh, A.M. (2018a), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018b), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
- Eltaher, M.A. and Norhan A. Mohamed. (2020), "Vibration of nonlocal perforated nanobeams under general boundary conditions", Smart Struct. Syst., 25(4), 510-514. https://doi.org/10.12989/sss.2020.25.4.501.
- Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos. Struct, 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143.
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and A.E. Alshorbagy. (2020a), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, M.A. and Alshorbagy, A.E. (2020b), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
- Eltaher, M.A., Mohamed, N. and Mohamed, S.A. (2020c), "Nonlinear buckling and free vibration of curved CNTs by doublet mechanics", Smart Struct. Syst., 26(2), 213-226. https://doi.org/10.12989/sss.2020.26.2.213.
- Eltaher, M.A., Abdelmoteleb, H.E., Daikh, A.A. and Abdelrahman, A.A. (2021a), "Vibrations and stress analysis of rotating perforated beams by using finite elements method", Steel Compos. Struct., 41(4), 505-520. https://doi.org/10.12989/scs.2021.41.4.505.
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.
- Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load", Int. J. Mech. Mater. Des., 17(3), 721-742. https://doi.org/10.1007/s10999-021-09555-9.
- Faraji Oskouie, M., Ansari, R. and Rouhi, H. (2021), "Bending analysis of nanoscopic beams based upon the strain-driven and stress-driven integral nonlocal strain gradient theories", J. Brazil. Soc. Mech. Sci. Eng., 43(3), 1-14. https://doi.org/10.1007/s40430-020-02782-9.
- Farrokhabadi, A., Mohebshahedin, A., Rach, R. and Duan, J.S. (2016), "An improved model for the cantilever NEMS actuator including the surface energy, fringing field and Casimir effects", Physica E: Low-Dimens. Syst. Nanostruct., 75, 202-209. https://doi.org/10.1016/j.physe.2015.09.033.
- Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solids Struct., 14(6), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2
- Hamed, M.A., Mohamed, N. and Eltaher, M.A. (2022), "Stability buckling and bending of nanobeams including cutouts", Eng. Comput., 38, 209-230. https://doi.org/10.1007/s00366-020-01063-2.
- Hashemian, M., Foroutan, S. and Toghraie, D. (2019), "Comprehensive beam models for buckling and bending behavior of simple nanobeam based on nonlocal strain gradient theory and surface effects", Mech. Mater., 139, 103209. https://doi.org/10.1016/j.mechmat.2019.103209.
- Hutchinson, J. and Fleck, N. (1997), "Strain gradient plasticity", Adv. Appl. Mech., 33, 295-361. https://doi.org/10.1016/S0065-2156(08)70388-0.
- Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029.
- Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E: Low-Dimen. Syst. Nanostruct., 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021.
- Kerid, R. and Bounnah, Y. (2021), "Effects of structure design on electrostatic pull-in voltage of perforated nanoswitch with intermolecular surface forces", J. Ultrafine Grained Nanostruct. Mater., 54(2), 219-227. https://doi.org/10.22059/JUFGNSM.2021.02.11.
- Keivani, M., Koochi, A., Sedighi, H.M., Abadyan, M., Farrokhabadi, A. and Shahedin, A.M. (2016), "Effect of surface layer on electromechanical stability of tweezers and cantilevers fabricated from conductive cylindrical nanowires", Surface Rev. Lett., 23(02), 1550101. https://doi.org/10.1142/S0218625X15501012.
- Kim, J.H., Jeon, J.H., Park, J.S., Seo, H.D., Ahn, H.J. and Lee, J. M. (2015), "Effect of reinforcement on buckling and ultimate strength of perforated plates", Int. J. Mech. Sci., 92, 194-205. https://doi.org/10.1016/j.ijmecsci.2014.12.016
- Li, L. and Hu, Y. (2015), "Buckling analysis of size-dependent nonlinear beams based on a nonlocal strain gradient theory", Int. J. Eng. Sci., 97, 84-94. https://doi.org/10.1016/j.ijengsci.2015.08.013.
- Li, L. and Hu, Y. (2016), "Nonlinear bending and free vibration analyses of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 107, 77-97. https://doi.org/10.1016/j.ijengsci.2016.07.011.
- Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021.
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation" J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001.
- Lu, L., Guo, X. and Zhao, J. (2017), "Size-dependent vibration analysis of nanobeams based on the nonlocal strain gradient theory", Int. J. Eng. Sci., 116, 12-24. https://doi.org/10.1016/j.ijengsci.2017.03.006.
- Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromech. Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.
- Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B: Chemical, 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.
- Melaibari, A., Daikh, A.A., Basha, M., Abdalla, A.W., Othman, R., Almitani, K.H. and Eltaher, M.A. (2022), "Free vibration of FGCNTRCs nano-plates/shells with temperature-dependent Properties", Mathematics, 10(4), 583. https://doi.org/10.3390/math10040583.
- Merzouki, T., Ahmed, H.M.S., Bessaim, A., Haboussi, M., Dimitri, R. and Tornabene, F. (2022), "Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory", Mathem. Mech. Solids, 27(1), 66-92. https://doi.org/10.1177/10812865211011759.
- Mohebshahedin, A. and Farrokhabadi, A. (2015), "The influence of the surface energy on the instability behavior of NEMS structures in presence of intermolecular attractions", Int. J. Mech. Sci., 101, 437-448. https://doi.org/10.1016/j.ijmecsci.2015.08.017.
- Rashidpour, P., Ghadiri, M. and Zajkani, A. (2021), "The response of viscoelastic composite laminated microplate under lowvelocity impact based on nonlocal strain gradient theory for different boundary conditions", Steel Compos. Struct., 41(3), 335-351. https://doi.org/10.12989/scs.2021.41.3.335
- Sahmani, S. and Safaei, B. (2019), "Nonlocal strain gradient nonlinear resonance of bi-directional functionally graded composite micro/nano-beams under periodic soft excitation", Thin-Wall. Struct., 143, 106226. https://doi.org/10.1016/j.tws.2019.106226.
- Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78. https://doi.org/10.1016/j.compstruct.2017.11.082.
- She, G.L., Liu, H.B. and Karami, B. (2020), "On resonance behavior of porous FG curved nanobeams", Steel Compos. Struct., 36(2), 179-186. https://doi.org/10.12989/scs.2020.36.2.179.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Simsek, M. (2019)., "Some closed-form solutions for static, buckling, free and forced vibration of functionally graded (FG) nanobeams using nonlocal strain gradient theory", Compos. Structures, 224, 111041. https://doi.org/10.1016/j.compstruct.2019.111041.
- Smith, F.H. and Moen, C.D. (2014), "Finite strip elastic buckling solutions for thin-walled metal columns with perforation patterns", Thin-Wall. Struct., 79, 187-201. https://doi.org/10.1016/j.tws.2014.02.009.
- Staszak, N., Gajewski, T. and Garbowski, T. (2022), "Shell-toBeam Numerical Homogenization of 3D Thin-Walled Perforated Beams", Materials, 15(5), 1827. https://doi.org/10.3390/ma15051827.
- Toupin, R. (1962), "Elastic materials with couple-stresses", Archive Rational Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945.
- Tsavdaridis, K.D. and D'Mello, C. (2011), "Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes", J. Construct. steel Res., 67(10), 1605-1620. https://doi.org/10.1016/j.jcsr.2011.04.004.
- Tsavdaridis, K.D., Lau, C.K. and Alonso-Rodriguez, A. (2021), "Experimental behaviour of non-seismical RWS connections with perforated beams under cyclic actions", J. Construct. Steel Res., 183, 106756. https://doi.org/10.1016/j.jcsr.2021.106756.
- Wang, A.J. and Chung, K.F. (2008), "Advanced finite element modelling of perforated composite beams with flexible shear connectors", Eng. Struct., 30(10), 2724-2738. https://doi.org/10.1016/j.engstruct.2008.03.001.
- Wang, S., Kang, W., Yang, W., Zhang, Z., Li, Q., Liu, M. and Wang, X. (2022), "Hygrothermal effects on buckling behaviors of porous bi-directional functionally graded micro-/nanobeams using two-phase local/nonlocal strain gradient theory", Europ. J. Mech.-A/Solids, 104554. https://doi.org/10.1016/j.euromechsol.2022.104554.
- Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration", Int. J. Eng. Science, 48(12), 2044-2053. https://doi.org/10.1016/j.ijengsci.2010.04.010
- Yang, F.A.C.M., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress-based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.
- Zeytinci, B.M., Sahin, M., Guler, M.A. and Tsavdaridis, K.D. (2021), "A practical design formulation for perforated beams with openings strengthened with ring type stiffeners subject to Vierendeel actions", J. Build. Eng., 43, 102915. https://doi.org/10.1016/j.jobe.2021.102915.
- Zulkefli, M.A., Mohamed, M.A., Siow, K.S., Majlis, B.Y., Kulothungan, J., Muruganathan, M. and Mizuta, H. (2018), "Stress analysis of perforated graphene nano-electro-mechanical (NEM) contact switches by 3D finite element simulation", Microsyst. Technol., 24(2), 1179-1187. https://doi.org/10.1007/s00542-017-3483-9.