과제정보
본 연구는 한국지질자원연구원에서 수행하는 주요 사업 '국내 바나듐(V) 등 에너지 저장광물 정밀탐사기술 개발 및 부존량 예측(GP2022-008)'의 지원을 받아 수행하였으며 이에 감사드립니다. 지질 조사 및 시료 채취를 도와주시고 연구에 관해 조언해 주신 오일환 박사님께 감사드립니다. 연구 진행 전반에 걸쳐 많은 도움을 준 서울대학교 지구환경과학부 해양암석지구화학 연구실 학생 여러분께 감사드립니다. 마지막으로 논문의 심사를 맡아주시고 유익한 조언을 주신 익명의 심사위원분들께 감사드립니다.
참고문헌
- Aurisicchio, C., Conte, A.M., De Vito, C., and Ottolini, L., 2012, Beryl from miarolitic pockets of granitic pegmatites, Elba, Italy: characterization of crystal chemistry by means of EMP and SIMS analyses. The Canadian Mineralogist, 50(6), 1467-1488. https://doi.org/10.3749/canmin.50.6.1467
- Ballouard, C., Elburg, M.A., Tappe, S., Reinke, C., Uecker-mann, H., and Doggart, S., 2020, Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa), Ore Geology Reviews, 116, 103252. https://doi.org/10.1016/j.oregeorev.2019.103252
- Bea, F., Fershtater, G. and Corretge, L.G., 1992, The geochemistry of phosphorus in granite rocks and the effect of aluminium, Lithos, 29(1-2), 43-56. https://doi.org/10.1016/0024-4937(92)90033-U
- Brehler, B. and Fuge, R., 1974, Chlorine. In handbook of Geochemistry (eds. Wedepohl, K. H.), Springer-Verlag, II2, 17A-17O.
- Cerny, P., 1991, Rare-element granitic pegmatites. Part II: Regional to global environments and petrogenesis, Geoscience Canada, 18, https://journals.lib.unb.ca/index.php/GC/article/view/3723.
- Cerny, P., Anderson, A.J., Tomascak, P.B., and Chapman, R., 2003, Geochemical and morphological features of beryl from the Bikita granitic pegmatite, Zimbabwe, The Canadian Mineralogist, 41(4), 1003-1011. https://doi.org/10.2113/gscanmin.41.4.1003
- Cerny, P. and Ercit, T., 2005, The classification of granitic pegmatites revisited, The Canadian Mineralogist, 43, 2005-2006. https://doi.org/10.2113/gscanmin.43.6.2005
- Chevychelov, V.Y., Borodulin, G.P., and Zaraisky, G.P., 2010, Solubility of columbite, (Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650-850℃ and 30-400 MPa: an experimental investigation, Geochemistry international, 48.5, 456-464. https://doi.org/10.1134/S0016702910050034
- Choi, Y.-H., Park, Y.-R., and Noh, J.H., 2014, Genesis of Boam lithium deposits in Wangpiri, Uljin. The Geological Society of Korea, 50(4), 489-500 (in Korean with English abstract).
- Deer, W.A., Howie, R.A., and Zussman, J., 1997, Singlechain silicates (volume 2A), The Geologhical Society of London, U.K., 668 p.
- Filip, J., Novak, M., Beran, A., and Zboril, R., 2006, Crystal chemistry and OH defect concentrations in spodumene from different granitic pegmatites, Physics and Chemistry of Minerals, 32(10), 733-746. https://doi.org/10.1007/s00269-005-0051-0
- Kaeter, D., Barros, R., Menuge, J.F., and Chew, D.M., 2018, The magmatic-hydrothermal transition in rare-element pegmatites from southeast Ireland: LA-ICP-MS chemical mapping of muscovite and columbite-tantalite, Geochimica et Cosmochimica Acta, 240, 98-130. https://doi.org/10.1016/j.gca.2018.08.024
- Kang, J.H., Oh, S.B., and Kim, H.S., 1998, Time-relationship between deformation and metamorphism of the Paleozoic metasedimentary rocks of the north Sobaegsan massif in the Janggunbong area, Korea, The Petrological Society of Korea, 7(3), 190-206 (in Korean with English abstract).
- KIGAM, 2021, Development of precise exploration technology for energy storage minerals (V) existing in Korea and the resources estimation, Research Report GP2020-007-2021, Korea Institute of Geoscience and Mineral Resources, Daejeon, Korea, 216p (in Korean with English abstract).
- Kim, O.J., Hong, M.S., Kim, K.T., and Park, H.I., 1963, Explanatory text of the geological map of Samgun sheet (1:50,000). Korea Research Institute of Geoscience and Mineral Resources, 36p (in Korean with English abstract).
- Lee, G., Kim, S.-Y., and Koh, S.-M., 2013, Potential evaluation of the Uljin lithium deposit. Mineral Science and Industry, 26, p. 32-36 (in Korean).
- Lee, D.W., 1988, Lithogeochemical characteristics of granitoids in relation to tin mineralization in the Sangdong and Ulchin Areas, Korea and their applicability to tin exploration, Seoul National University Ph. D. thesis, Korea, 153p (in Korean with English abstract).
- Lee, Y.I., Choi, T., and Orihashi, Y., 2011, LA-ICP-MS zircon U-Pb ages of the Precambrian Yuli Group. Journal of the Geological Society of Korea, 47(1), 81-87 (in Korean with English abstract).
- Lee, Y., Cho, M., and Roeske, S.M., 2020, Fluid-present partial melting of Paleoproterozoic Okbang amphibolite in the Yeongnam Massif, Korea. Lithosphere, 2020(1).
- Linnen, R.L. and Keppler, H., 1997, Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust, Contributions to Mineralogy and Petrology, 128(2), 213-227. https://doi.org/10.1007/s004100050304
- London, D., 1992. Phosphorus in S-type magmas: the P2O5 content of feldspars from peraluminous granites, pegmatites, and rhyolites, American Mineralogist, 77(1-2), 126-145.
- London, D., 2014, A petrologic assessment of internal zoning in granitic pegmatites, Lithos, 184, 74-104. https://doi.org/10.1016/j.lithos.2013.10.025
- London, D., 2016, Rare-Element Granitic Pegmatites, In Rare Earth and Critical Elements in Ore Deposits (eds. Verplanck, P. L. and Hitzman, M. W.), Society of Economic Geologists, 18. https://doi.org/10.5382/REV.18.
- London, D., 2018, Ore-forming processes within granitic pegmatites, Ore Geology Reviews, 101, 349-383. https://doi.org/10.1016/j.oregeorev.2018.04.020
- Martin, R.F. and De Vito, C., 2005, The patterns of enrichment in felsic pegmatites ultimately depend on tectonic setting, Canadian Mineralogist, 43(6), 2027-2047. https://doi.org/10.2113/gscanmin.43.6.2027
- Moon, S.H., Park, H.-I., Ripley, E.M. and Lee, I., 1996, Mineralogic and stable isotope studies of cassiterite greisen mineralization in the Uljin area, Korea, Economic Geology, 91(5), 916-933. https://doi.org/10.2113/gsecongeo.91.5.916
- Oh, I.-H., Yang, S.-J., Heo, C.-H., Lee, J.-H., Kim, E.-J., and Cho, S.-J., 2022, Study on the controlling factors of Li-bearing pegmatite intrusions for mineral exploration, Uljin, South Korea, Minerals, 12, 589.
- Pauly, C., Gysi, A.P., Pfaff, K., and Merkel, I. (2021). Beryl as indicator of metasomatic processes in the California Blue Mine topaz-beryl pegmatite and associated miarolitic pockets, Lithos, 404, 106485.
- Selway, J.B., Breaks, F.W., and Tindle, A.G., 2005, A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits, Exploration and Mining Geology, 14(1-4), 1-30. https://doi.org/10.2113/gsemg.14.1-4.1
- Sha, L.K., and Chappell, B.W., 1999, Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis, Geochimica et Cosmochimica Acta, 63(22), 3861-3881. https://doi.org/10.1016/S0016-7037(99)00210-0
- Sohn, G., Lee, K., and Jeong, D., 2002, Early Paleozoic strata of Uljin, The Korean Society of Economic and Environmental Geology, 280-282 (in Korean).
- Tischendorf, G., Gottesmann, B., Foerster, H.J., and Trumbull, R.B., 1997, On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineralogical Magazine, 61(409), 809-834. https://doi.org/10.1180/minmag.1997.061.409.05
- Trueman, D.L. and Cerny, P., 1982, Exploration for RareElement Granitic Pegmatites. In Granitic Pegmatites in Science and Industry: Mineralogical Association of Canada Short Course Handbook (Eds. Cerny, P.), 8, 463-494.
- Vernon, R.H., 2004, A Practical Guide to Rock Microstructure, Cambridge University Press, Cambridge, 594p.