DOI QR코드

DOI QR Code

Origin and Reservoir Types of Abiotic Native Hydrogen in Continental Lithosphere

대륙 암석권에서 무기 자연 수소의 성인과 부존 형태

  • Kim, Hyeong Soo (Department of Earth and Environmental Sciences, Korea University)
  • 김형수 (고려대학교 지구환경과학과)
  • Received : 2022.07.19
  • Accepted : 2022.09.21
  • Published : 2022.09.30

Abstract

Natural or native abiotic molecular hydrogen (H2) is a major component in natural gas, however yet its importance in the global energy sector's usage as clean and renewable energy is underestimated. Here we review the occurrence and geological settings of native hydrogen to demonstrate the much widesprease H2 occurrence in nature by comparison with previous estimations. Three main types of source rocks have been identified: (1) ultramafic rocks; (2) cratons comprising iron (Fe2+)-rich rocks; and (3) uranium-rich rocks. The rocks are closely associated with Precambrian crystalline basement and serpentinized ultramafic rocks from ophiolite and peridotite either at mid-ocean ridges or within continental margin(Zgonnik, 2020). Inorganic geological processes producing H2 in the source rocks include (a) the reduction of water during the oxidation of Fe2+ in minerals (e.g., olivine), (b) water splitting due to radioactive decay, (c) degassing of magma at low pressure, and (d) the reaction of water with surface radicals during mechanical breaking (e.g., fault) of silicate rocks. Native hydrogen are found as a free gas (51%), fluid inclusions in various rock types (29%), and dissolved gas in underground water (20%) (Zgonnik, 2020). Although research on H2 has not yet been carried out in Korea, the potential H2 reservoirs in the Gyeongsang Basin are highly probable based on geological and geochemical characteristics including occurrence of ultramafic rocks, inter-bedded basaltic layers and iron-copper deposits within thick sedimentary basin and igneous activities at an active continental margin during the Permian-Paleogene. The native hydrogen is expected to be clean and renewable energy source in the near future. Therefore it is clear that the origin and exploration of the native hydrogen, not yet been revealed by an integrated studies of rock-fluid interaction studies, are a field of special interest, regardless of the presence of economic native hydrogen reservoirs in Korea.

무기 자연 수소(H2)는 천연가스의 주요 구성성분이지만, 청정 및 재생 가능한 에너지로써 글로벌 에너지 분야에서 그 중요성이 다소 과소평가되고 있다. 이 논문은 우리가 과거에 생각했던 것보다 훨씬 광범위한 환경에서 무기 자연 수소가 대륙 암석권에서 대량 생성된다는 최근 논문들을 바탕으로 자연 수소의 발생 기작과 이와 관련된 다양한 지질학적 특징들을 검토하였다. 지금까지 확인된 자연 수소의 주요 근원암은 (1) 초고철질암, (2) 철(Fe2+)이 풍부한 암석으로 구성된 강괴, (3) 우라늄이 풍부한 암석이다. 이 암석들은 선캄브리아 시대 결정질 기반암 그리고 중앙 해령과 대륙기반의 오피올라이트(ophiolite), 페리도타이트(peridotite) 암체에서 사문암화된 초고철질암과 밀접하게 관련된다(Zgonnik, 2020). 이 근원암들에서 자연 수소를 생성하는 무기적 작용은 (a) 광물(예, 감람석)의 Fe2+이 산화되는 동안 물의 환원, (b) 방사성 붕괴로 인한 수전해, (c) 규산염 암석의 기계적 파괴(예, 단층) 동안 물과 표면 라디칼의 반응 등이며, 자연 수소는 자유 기체(51%), 다양한 광물 내의 유체포유물(29%), 지하수의 용존기체(20%) 형태로 발견된다(Zgonnik, 2020). 우리나라의 경우 아직 자연 수소 연구가 수행되지는 않았지만, 경상분지 내 무기 자연 수소의 생성과 부존 가능성은 두꺼운 퇴적분지 내에서 초고철질암, 층간 현무암층과 철/구리 부화대 존재, 그리고 페름기-제3기 동안 능동적 대륙 연변부에서 여러 번의 화성활동 등을 포함한 지질학적/지구화학적 특성을 고려하면 상당히 높은 것으로 평가된다. 최근 지질 기원의 자연 수소를 연구/탐사하는 국외 학자들과 산업체들은 가까운 미래에 자연 수소가 깨끗하고 재생 가능한 획기적인 에너지원 역할을 할 것으로 전망하고 있다. 따라서 우리나라에서 자연 수소의 경제적 활용을 위한 부존지 발견 여부와 상관없이 지하의 암석-유체 상호작용에 관한 통합 연구를 통해 아직 밝혀지지 않은 자연 수소의 성인과 탐사는 차세대 핵심 연구임이 분명하다.

Keywords

Acknowledgement

본 논문은 노진환 교수님의 학문적 열정으로부터 시작되었고, 저자는 논문 작성 과정 동안 건설적인 검토와 아낌없는 조언을 해 주신 노진환 교수님께 감사의 말씀을 드립니다. 또한, 심사과정 중에 건설적인 제안과 미비한 점을 지적하여 논문의 완성도를 높여주신 이승렬 박사와 익명의 심사위원께 감사드린다. 이 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2022R1A2C1003840).

References

  1. Abrajano, T.A., Surchio, N.C., Kennedy, B.M., Lyon, G.L., Muehlenbachs, K. and Bohlke, J.K. 1990, Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Applied Geochemistry, 5, 625-630. doi:10.1016/0883-2927(90)90060-I
  2. Aiuppa, A., Shinohara, H., Tamburello, G., Giudice, G., Liuzzo, M. and Moretti, R., 2011, Hydrogen in the gas plume of an open-vent volcano, Mount Etna, Italy. J Geophys Res. 116https://doi.org/10.1029/2011JB008461. B10204.
  3. Apps, J.A. and van de Kamp, P.C., 1993, Energy gases of abiogenic origin in the Earth's crust. In 'Future Energy Gases.' United States Geological Survey Professional Paper 1570, 81-130.
  4. Bali, E., Audetat, A. and Keppler, H., 2013, Water and hydrogen are immiscible in Earth's mantle. Nature 495, 220-222. https://doi.org/10.1038/nature11908.
  5. Barreto, L., Makihira, A., Riahi, K., 2003, The hydrogen economy in the 21st century: a sustainable development scenario. International Journal of Hydrogen Energy, 28, 267-284. https://doi.org/10.1016/S0360-3199(02)00074-5.
  6. Boreham, C.J., Edwards, D.S., Czado, K., Rollet, N., Wang, L., van der Wielen, S., Champion, D., Blewett, R., Feitz, A. and Henson, P.A., 2021a, Hydrogen in Australian natural gas: occurrences, sources and resources. The APPEA Journal, 61, 163-191. https://doi.org/10.1071/AJ20044
  7. Boreham, C.J., Sohn, J.H., Cox, N., Williams, J., Hong, Z., and Kendrick, M.A., 2021b. Hydrogen and hydrocarbons associated with the Neoarchean Frog's Leg Gold Camp, Yilgarn Craton, Western Australia. Chemical Geology, 575, 120098. https://doi.org/10.1016/j.chemgeo.2021.120098
  8. Boschetti, T. and Toscani, L., 2008, Springs and streams of the Taro-Ceno Valleys (Northern Apennine, Italy): Reaction path modeling of waters interacting with serpentinized ultramafic rocks. Chemical Geology 257, 76-91. https://doi.org/10.1016/j.chemgeo.2008.08.017
  9. Briere, D., Jerzykiewicz, T. and Sliwinski, W., 2017, On Generating a Geological Model for Hydrogen Gas in the Southern Taoudenni Megabasin (Bourakebougou Area, Mali). AAPG/SEG International Conference & Exhibition, Astract with program.
  10. Bruce, S., Temminghoff, M., Hayward, J., Schmidt, E., Munnings, C., Palfreyman, D. and Hartley, P., 2018, National Hydrogen Roadmap. CSIRO, Australia. Available at https://publications.csiro.au/rpr/pub? pid=csiro:EP184600 [Verified 4 January 2021].
  11. Le Caer, S., 2011, Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water, 3, 235-253; doi:10.3390/w3010235
  12. Cheong, A.C.S., Jo, H.J., Jeong, Y.J. and Li, X.H., 2019, Magmatic response to the interplay of collisional and accretionary orogenies in the Korean Peninsula: Geochronological, geochemical, and O-Hf isotopic perspectives from Triassic plutons. Geological Society of America Bulletin, 131, 609-634. https://doi.org/10.1130/B32021.1
  13. Cho, M., Kim, T., Yang, S.-Y. and Yi, K., 2017, Paleoproterozoic to Triassic crustal evolution of the Gyeonggi Massif, Korea: Tectonic correlation with the North China craton. In R.D. Law, J.R. Thigpen, A.J. Merschat, & H. Stowell (Eds.), Linkages and Feedbacks in Orogenic Systems (Vol. 213). Geological Society of America Memoir. (pp. 165-197). The Geological Society of America, Inc. https://doi.org/10.1130/2017.1213(09)
  14. Cho, M., Cheong, W., Ernst, W.G., Kim, T. and Yi, K., 2020, U-Pb detrital zircon ages of Cambrian-Ordovician sandstones from the Taebaeksan Basin, Korea: Provenance variability in platform shelf sequences and paleogeographic implications. The Geological Society of American Bulletin, https://doi.org/10.1130/B35521.1
  15. Chough S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Science Reviews, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  16. Chough, S.K., 2013, Geology and Sedimentology of Korean Peninsula. In: Elsevier Insights. Elsevier, pp. 363.
  17. Chough, S.K., Kwon, S.-T., Ree, J.-H. and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Review 52, 175-235. https://doi.org/10.1016/S0012-8252(00)00029-5
  18. Christensen, H. and Bjergbakke, E., 1982, Radiolysis of ground water from spent fuel. Swedish Nuclear Fuel Safety Project, 34p.
  19. Coveney, R.M., Jr., Goebel, E.D., Dreschhoff, G.A.M. and Angino, E.E., 1987, Serpentinization and the origin of hydrogen gas in Texas. Bulletin of the American Association of Petroleum Geologists, 71, 39-48. doi:10.1306/94886D3F1704-11D7-8645000102C1865D
  20. Cruikshank, D.P., Morrison, D. and Lennon, K., 1973, Volcanic gases: hydrogen burning at Kilauea volcano, Hawaii. Science, 182, 277-279. https://doi.org/10.1126/science. 182.4109.277.
  21. Dubessy, J., Poty, B. and Ramboz, C., 1989, Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. European Journal of Mineralogy 1, 517-534. doi:10.1127/ejm/1/4/0517
  22. Drummond, B.J., Hobbs, B.E., and Goleby, B.R., 2004, The role of crustal fluids in the tectonic evolution of the Eastern Goldfields Province of the Archaean Yilgarn Craton, Western Australia. Earth Planets Space, 56, 1163-1169. https://doi.org/10.1186/BF03353335
  23. Etiope, G. and Schoell, M., 2014, Abiotic gas: atypical but not rare. Elements 10, 291-296. https://doi.org/10.2113/gselements.10.4.291
  24. Evans, B.W., Hattori, K. and Baronnet, A., 2013, Serpentinite: what, why, where? Elements 9, 99-106. doi:10.2113/gselements.9.2.99
  25. Gaillard, F., Scaillet B. and Arndt, N.T., 2011, Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229-232. https://doi.org/10.1038/nature10460
  26. Giardini, A.A. and Melton, C.E., 1983, A scientific explanation for the origin and location of petroleum accumulations. Journal of. Petroleum Geology, 6, 117-138. https://doi.org/10.1111/j.1747-5457.1983.tb00412.x
  27. Giggenbach, W.F., 1987, Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Applied Geochemistry 2, 143-161. https://doi.org/10.1016/0883-2927(87)90030-8
  28. Gilat, A.L., Vol, A., 2005, Primordial hydrogen-helium degassing, an overlooked major energy source for internal terrestrial processes. HAIT J Sci Eng B 2, 125-167.
  29. Gilat, A.L. and Vol, A., 2012, Degassing of primordial hydrogen and helium as the major energy source for internal terrestrial processes. Geoscience Frontiers, 3, 911-921. https://doi.org/10.1016/j.gsf.2012.03.009
  30. Goebel, E.D., Coveney, R.M., Jr., Angino, E.E., Zeller, E.J. and Dreschhoff, G.A.M., 1984, Geology, composition, isotopes of naturally occurring H2/N2 rich gas from wells near Junction City, Kansas. Oil and Gas Journal 82, 215-222.
  31. Gregory, S.P., Barnett, M.J., Field, L.P. and Milodowski, A.E., 2019, Subsurface microbial hydrogen cycling: natural occurrence and implications for industry. Microorganisms, 7, 53. doi:10.3390/microorganisms7020053
  32. Guelard, J., Beaumont, V., Rouchon, V., Guyot, F., Pillot, D., Jezequel, D., Ader, M., Newell, K.D. and Deville, E., 2017, Natural H2 in Kansas: deep or shallow origin? Geochemistry Geophysics Geosystems, 18, 1841-1865. doi:10.1002/2016GC006544
  33. Holland, H.D., 2002, Volcanic gases, black smokers, and the Great Oxidation Event. Geochimica et Cosmochimica Acta, 66, 3811-3826. doi:10.1016/S0016-7037(02)00950-X
  34. Holm, N.G., Oze, C., Mousis, O., Waite, J.H. and GuilbertLepoutre, A., 2015, Serpentinization and the Formation of H2 and CH4 on Celestial Bodies (Planets, Moons, Comets). ASTROBIOLOGY, 15, 587-600. doi:10.1089/ast.2014.1188
  35. Hwang, S.K. and Woo, B.G., 2009, Role of the Cheongryangsan Conglomerate and the Osipbong Basalt in Classifying Stratigraphy of the Hayang Group, Yeongyang Subbasin. Journal of Petrological Society of Korea, 18(3), 181-194.
  36. IRENA, 2019, Global energy transformation: A roadmap to 2050 (2019 edition), International Renewable Energy Agency, Abu Dhabi, 52p.
  37. IRENA, 2020, Green Hydrogen: A guide to policy making, International Renewable Energy Agency, Abu Dhabi, 52p.
  38. Johns, D.R., Menpes, S.A., Walshe, P. and Bache, F., 2017, Exploration of a Sub-salt Play in the Southern Amadeus Basin, Central Australia - Searching for Big Gas in Proterozoic Reservoirs. Abstract SEAPEX Exploration Conference.
  39. Katayama, I., Kurosaki, I. and Hirauchi, K., 2010, Low silica activity for hydrogen generation during serpentinization: an example of natural serpentinites in the Mineoka ophiolite complex, central Japan. Earth and Planetary Science Letters, 298, 199-204. doi:10.1016/j.epsl.2010.07.045
  40. Kim, H.S. and Ree, J-H., 2010, P-T modeling of kyanite and sillimanite paramorphs growth after andalusite in late Paleozoic Pyeongan Supergroup, South Korea: Implication for metamorphism during the Mesozoic tectonic evolution. Lithos 118, 269-286. https://doi.org/10.1016/j.lithos.2010.05.005
  41. Kim, H.S., Ree, J-H., and Kim, J., 2012, Tectonometamorphic evolution of the Permo-Triassic Songrim (Indosinian) orogeny: evidence from the late Paleozoic Pyeongan Supergroup in the northeastern Taebaeksan Basin, South Korea. International Journal of Earth Sciences, 101, 483-498. https://doi.org/10.1007/s00531-011-0683-x
  42. Kim, M.G. and Lee, Y.I., 2018, The Pyeongan Supergroup (upper Paleozoic-Lower Triassic) in the Okcheon Belt, Korea: A review of stratigraphy and detrital zircon provenance, and its implications for the tectonic setting of the eastern Sino-Korean Block. Earth-Science Reviews 185, 1170-1186. https://doi.org/10.1016/j.earscirev.2018.09.006
  43. Kim, H.S., Ree, J-H., Kang, H-C. and Yi, K., 2021, Pressure-temperature-time-deformation (P-T-t-d) path for Devonian forearc deposits in the Imjingang Belt, South Korea: Implications for Permian-Triassic collisional orogenesis on the eastern margin of Eurasia. Journal of Metamorphic Geology, 1-28. https://doi.org/10.1111/jmg.12636
  44. Kim, K.H., Park, J.K., Yang, J.M. and Yoshida, N., 1990, Petrogenesos of the carbonate and serpentinite from the Ulsan Iron mine. Journal of Geological Society Kora, 26, 5, 407-417.
  45. Kim, K-H., Yun, S.T., Yu, S., Choi, B-Y., Kim, M-J. and Lee J-J., 2020, Geochemical pattern recognitions of deep thermal groundwater in South Korea using self-organizing map: Identified pathways of geochemical reaction and mixing. Journal of Hydrology, 589, 125202. https://doi.org/10.1016/j.jhydrol.2020.125202
  46. Kim, N.K. and Choi, S.H., 2016, Petrogenesis of Late Triassic ultramafic rocks from the Andong Ultramafic Complex, South Korea. Lithos 264, 28-40. https://doi.org/10.1016/j.lithos.2016.07.042
  47. Kim, S.W., Kwon, S., Park, S.I., Yi, K., Santosh, M. and Kim, H.S., 2017, Early to middle Paleozoic tectonometamorphic evolution of the Hongseong area, central western Korean peninsula: Tectonic implications. Gondwana Research, 47, 308-322. https://doi.org/10.1016/j.gr.2016.05.016
  48. Kim, S.W., Whang, S.K., Lee Y.J. and Koh, I.S., 2000, Diversity of the Cretaceous volcanics in Gyeongsang basin, Korea. Journal of Petrological Society of. Korea, 9(1), 1-12.
  49. Klein, F., Bach, W. and McCollom, T.M., 2013, Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos, 178, 55-69. https://doi.org/10.1016/j.lithos.2013.03.008
  50. Klein, F., Tarnas, J.D. and Bach, W., 2020, Abiotic sources of molecular hydrogen on Earth. Elements 16, 19-24. doi:10.2138/gselements.16.1.19
  51. Kumagai, Y., Kimura, A., Taguchi, M., Nagaishi, R., Yamagishi, I. and Kimura, T., 2013, Hydrogen production in gamma radiolysis of the mixture of mordenite and seawater. Journal of Nuclear Science and Technology, 50, 130-138. https://doi.org/10.1080/00223131.2013.757453
  52. Kwon, Y.W., Kim, H.S. and Oh, C.W., 1997, Polymetamorphism of the Odesan Gneiss Complex in the northeastern area of the Kyonggi Massif, Korea. Journal of Petrological Society of. Korea, 6, 226-243.
  53. Kwon, S., Sajeev, K., Mitra, G., Park, Y., Kim, S.W. and Ryu, I-D., 2009, Evidence for Permo-Triassic collision in Far East Asia: The Korean collisional orogen. Earth and Planetary Letters 279, 340-349. https://doi.org/10.1016/j.epsl.2009.01.016
  54. Larin, N., Zgonnik, V., Rodina, S., Deville, E., Prinzhofer, A. and Larin, V.N., 2014, Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia. Natural Resources Research, doi:10.1007/s11053-014-9257-5
  55. LaVerne, J.A. and Tandon, L., 2005, H2 and Cl2 production in the radiolysis of calcium and magnesium chlorides and hydroxides. Journal of Physical Chemistry A 109, 2861-2865. https://doi.org/10.1021/jp044166o
  56. Lee, B.C., Oh, C.W., Kim, T.S. and Yi, K., 2016, The metamorphic evolution from ultrahigh-temperature to amphibolite facies metamorphism in the Odaesan area after the collision between the North and South China Cratons in the Korean Peninsula. Lithos, 256-257, 109-131. https://doi.org/10.1016/j.lithos.2016.03.019
  57. Lee, Y.I. and Sheen, D-H., 1998, Detrital modes of the Pyeongan Supergroup (Late Carboniferous-Early Triassic) sandstones in the Samcheog coalfield, Korea: implications for provenance and tectonic setting. Sedimentary Geology, 119, 219-238. https://doi.org/10.1016/S0037-0738(98)00053-0
  58. Lee, J.H. and Kim, S.Y., 1970, Mineralization and ore deposits of native copper in Seachangdong basalt flows in Yeongyang Basin, Korea. Journal of Geological Society of Korea, 6(4), 233-248.
  59. Lilley, M.D., Butterfield, D.A., Lupton, J.E. and Olson, E.J., 2003, Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature, 422, 878-881. https://doi.org/10.1038/nature01569
  60. Lin, L-H., Hall, J., Lippmann-Pipke, J., Ward, J. A., Sherwood Lollar, B., de Flaun, M., Rothmel, M., Moser, D. and Gihring, T.M., 2005, Radiolytic H2 in continental crust: nuclear power for deep subsurface microbial communities. Geochemistry Geophysics Geosystems 6, Q07003. doi:10.1029/2004GC000907
  61. Ma, W., Xin, H., Zhong, D., Qian, F., Han, H. and Yuan, Y., 2016, Effects of different states of Fe on anaerobic digestion: A review, Journal of Harbin Institute of Technology, 22, 69-75.
  62. Mayhew, L.E., Ellison, E.T., McCollom, T.M., Trainor, T.P. and Templeton, A.S., 2013, Hydrogen generation from low-temperature water-rock reactions. Nature Geoscience, 6, 478-483. doi:10.1038/NGEO1825
  63. McCollom, T.M. and Seewald, J.S., 2013, Serpentinites, hydrogen and life. Elements, 9, 129-134. doi:10.2113/gselements.9.2.129
  64. Mccollom, T. and Bach, W., 2009, Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochimica et Cosmochimica Acta, 73, 856-875. https://doi.org/10.1016/j.gca.2008.10.032
  65. Miller, H.M., Matter, J.M., Kelemen, P., Ellison, E.T., Conard, M.E., Fierer, N., Ruchala, T., Tominage, M. and Templeton, A.S., 2016, Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability. Geochimica et Cosmochimica Acta, 179, 217-241. https://doi.org/10.1016/j.gca.2016.01.033
  66. Moretti, I., Brouilly, E., Loiseau, K., Prinzhofer, A. and Deville, E., 2021, Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening. Geosciences, 11, 145. https://doi.org/10.3390/geosciences11030145
  67. Moussallam, Y., Oppenheimer, C., Aiuppa, A., Giudice, G., Moussallam, M. and Kyle, P., 2012, Hydrogen emissions from Erebus volcano, Antarctica. Bulletin of Volcanology, 74, 2109-2120. https://doi.org/10.1007/s00445-012-0649-2
  68. Nikolaidis, P. and Poullikkas, A., 2017, A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews, 67, 597-611. doi:10.1016/j.rser.2016.09.044
  69. Nuttall, W. and Bakenne, A.T., 2020, 'Fossil Fuel Hydrogen: Technical, Economic and Environmental Potential'. (Springer Nature: Switzerland AG.) doi:10.1007/978-3-030-30908-4
  70. Oh, C.W., Imayama, T., Lee, S.Y., Yi, S-B., Yi, K. and Lee, B.C., 2015, Permo-Triassic and Paleoproterozoic metamorphism related to continental collision in Yangpyeong, South Korea. Lithos, 216-217, 264-284. https://doi.org/ 10.1016/j.lithos.2014.12.016
  71. Oh, C.W., Imayama, T., Yi, S-B., Kim, T., Ryu, I-C., Jeon, J. and Yi, K., 2014, Middle Paleozoic metamorphism in the Hongseong area, South Korea, and tectonic significance for Paleozoic orogeny in northeast Asia. Journal of Asian Earth Sciences, 95, 203-216. https://doi.org/10.1016/j.jseaes.2014.08.011
  72. Ojakangas, R.W., Morey, G.B. and Green, J.C., 2001, The Mesoproterozoic Midcontinent Rift System, Lake Superior Region, USA, Sedimentary Geology, 142, 421-442. https://doi.org/10.1016/S0037-0738(01)00085-9
  73. Park, B.J. and Kim, H.S., 2022, P-T-XCO2-bulk rock composition modeling of garnet decomposition in amphibolite and mafic granulite: Tectono-metamorphic insights into the Permian-Triassic orogeny on the eastern margin of the Korean Peninsula. Contributions to Mineralogy and Petrology, in press.
  74. Pizzo, S., 2020, Gold hydrogen. Hydrogen Fuel News. Available at/ture, South Australia. Journal of Geophysical Research, 99(E6), 13167-13179.
  75. Prinzhofer, A., Cisse, S.S.T. and Diallo, A.B., 2018, Discovery of a large accumulation of natural hydrogen in Bourakebougou (Mali). International Journal of Hydrogen Energy, 43, 19315-19326. doi:10.1016/j.ijhydene.2018.08.193
  76. Prinzhofer, A. and Deville, E., 2015, L'hydrogene naturel, la prochaine revolution energetique? Belin, Paris.
  77. Prinzhofer, A., Moretti, I., Francolin, J., Pacheco, C., D'Agostino, A., Werly, J. and Rupin, F., 2019, Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. International Journal of Hydrogen Energy, 44, 5676-5685. https://doi.org/10.1016/j.ijhydene.2019.01.119
  78. Ree, J.-H., Kwon, S.-H., Park, Y., Kwon, S.-T. and Park, S.- H., 2001, Petrotectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: implications for the timing of strikeslip shearing and thrusting. Tectonics, 20, 850-867. https://doi.org/10.1029/2000TC001267
  79. Rumyantsev, V.N., 2016, Hydrogen in the Earth's outer core, and its role in the deep Earth geodynamics. Geodynamics and Tectonophysics, 7, 119-135. doi:10.5800/GT2016-7-1-0200
  80. Runte, J., 2015, Merchant hydrogen: industrial gas and energy markets. In: BCC Market Research #CHM042C, Wellesley, MA.
  81. Sato, M., Sutton, A.J. and McGee, K.A., 1984, Anomalous hydrogen emissions from the San Andreas fault observed at the Cienega Winery, central California. Pure and Applied Geophysics, 122, 376-391. https://doi.org/10.1007/BF00874606
  82. Seo, J., Choi, S-G., Kim, D.W., Park, J.W. and Oh, C.W., 2015, A new genetic model for the Triassic Yangyang iron-oxide-apatite deposit, South Korea: Constraints from in situ U-Pb and trace element analyses of accessory minerals. Ore Geology Reviews, 70, 110-135. https://doi.org/10.1016/j.oregeorev.2015.04.009
  83. Sherwood Lollar, B., Onstott, T., Lacrampe-Couloume, G. and Ballentine, C.J., 2014, The contribution of the Precambrian continental lithosphere to global H2 production. Nature, 516, 379-382. https://doi.org/10.1038/nature14017
  84. Shock, E., Bockisch, C., Estrada, C., Fecteau, K., Gould, I. R., Hartnett, H., Johnson, K., Robinson, K., Shipp, J. and Williams, L., 2019, Earth as organic chemist. In 'Deep Carbon: Past to Present.' (Eds B. Orcutt, I. Daniel, and R. Dasgupta) pp. 415-445. (Cambridge University Press; Cambridge, UK.) doi:10.1017/9781108677950
  85. Sleep, N.H. and Zoback, M.D., 2007, Hypothesis paper. Did earthquakes keep the early crust habitable? Astrobiology, 7, 1023-1032. doi:10.1089/ast.2006.0091
  86. Smith, N.J.P., Shephard, T.J., Styles, M.T. and Williams, G.M., 2005, Hydrogen exploration: a review of global hydrogen accumulations and implications for prospective areas in NW Europe. In 'Petroleum Geology: North-West Europe and Global Perspectives-Proceedings of the 6th Petroleum Geology Conference, Geological Society, London.' (Eds A.G. Dore and B.A. Vining). Petroleum Geology Conference Series 6, 349-358. doi:10.1144/0060349
  87. Song, J-H., Kim, S. and Rhie, J., 2020, Heterogeneousmodification and reactivation of a cratonmargin beneath the Korean Peninsula from teleseismic travel time tomography. Gondwana Research, 81, 475-489. https://doi.org/10.1016/j.gr.2019.11.016
  88. Stevens, T.O. and McKinley, J.P., 2000, Abiotic controls on H2 production from basalt-water reactions and implications for aquifer biogeochemistry. Environmental Science & Technology, 34, 826-831. https://doi.org/10.1021/es990583g
  89. Sugisaki, R., Ido, M., Takeda, H., Isobe, Y., Hayashi, Y., Nakamura, N., Satake, H. and Mizutani, Y., 1983, Origin of hydrogen and carbon dioxide in fault gases and its relation to fault activity. The Journal of Geology, 91, 239-258. doi:10.1086/628769
  90. Telling, J., Boyd, E.S., Bone, N., Jones, E.L., Tranter, M. and MacFarlane, J.W., 2015, Rock comminution as a source of hydrogen for subglacial ecosystems. Nature Geoscience, 8, 851-855. https://doi.org/10.1038/ngeo2533
  91. Truche, L., McCollom, T.M. and Martinez, I., 2020, Hydrogen and abiotic hydrocarbons: molecules that change the world. Elements. 16, 13-18. doi:10.2138/gselements.16.1.13
  92. Vacquand, C., 2011, Genese et mobilite de l'hydrogene dans les roches sedimentaires: source d'energie naturelle ou vecteur energetique stockable? IFP Energies nouvelles and Institut de Physique du Globe de Paris.
  93. Vacquand, C., Deville, E., Beaumont, V., Guyot, F., Sissmann, O., and Pillot, D., 2018, Reduced gas seepages in ophiolitic complexes: evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochimica et Cosmochimica Acta. 223, 437-461. https://doi.org/10.1016/j.gca.2017.12.018.
  94. Voitov, G.I. and Rudakov, V.P., 2000, Hydrogen in the air of subsoil deposits: its monitoring and application potential. Izvestiya, Physics of the Solid Earth, 36, 511-518.
  95. Walshe, J.L., 2006, Degassing of hydrogen from the Earth's core and related phenomena of system Earth. Goldschmidt Conf. Geochimica et Cosmochimica Acta 70(18)Supplementary, A684 2006 Goldschmidt Conference Abstract. doi:10.1016/j.gca.2006.06.1490
  96. Walshe, J.L., Hobbs, B., Ord, A., Regenauer-Lieb, K. and Barnicoat, A., 2005, .Mineral systems, hydridic fluids, the Earth's core, mass extinction events and related phenomena. In 'Mineral Deposit Research:Meeting the Global Challenge.' (Eds J. Mao and F.P. Bierlein) pp. 65-68. (Springer: Berlin, Heidelberg.) doi:10.1007/3-540-27946-6_17
  97. Ware, R.H., Roecken, C. and Wyss, M., 1985, The detection and interpretation of hydrogen in fault gases. Pure and Applied Geophysics, 122, 392-402. https://doi.org/10.1007/BF00874607. PAGEOPH.
  98. Warr, O., Giunta, T., Ballentine, C. and Sherwood Lollar, B., 2019, Mechanisms and rates of 4He, 40Ar, and H2 production and accumulation in fracture fluids in Precambrian Shield environments. Chemical Geology, 530, 119322. doi:10.1016/j.chemgeo.2019.119322
  99. Whattam, S.A., Cho, M. and Smith, I.E.M., 2011, Magmatic peridotites and pyroxenites, Andong Ultramafic Complex, Korea: Geochemical evidence for supra-subduction zone formation and extensive melt-rock interaction. Lithos, 127, 599-618. https://doi.org/10.1016/j.lithos.2011.06.013
  100. Wiersberg, T. and Erzinger, J., 2008, Origin and spatial distribution of gas at seismogenic depths of the San Andreas Fault from drill-mud gas analysis. Applied Geochemistry, 23, 1675-1690. https://doi.org/10.1016/j.apgeochem.2008.01.012.
  101. Wood, M., 2021, The rise of the hydrogen economy. Avaliable at https://www.woodmac.com/nslp/hydrogen-guide/[Verified 8 January 2021]
  102. Zgonnik, V., 2020, The occurrence and geoscience of natural hydrogen: a comprehensive review. Earth-Science Reviews 203, 103140. doi:10.1016/j.earscirev.2020.103140
  103. Zgonnik, V., Beaumont, V., Deville, E., Larin, N., Pillot, D. and Farrell, K.M., 2015, Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Progress in Earth and Planetary Science, 2:31. doi:10.1186/s40645-015-0062-5
  104. Фридман, А., 1970. Природные газы ру…дных месторождений. Недра, Москва.