DOI QR코드

DOI QR Code

제주도 동수악 분화구에서 산출되는 맨틀포획암의 암석학적 연구

Petrological Study on the Mantle Xenolith from Dongsuak Crater, Jeju Island

  • 길영우 (전남대학교 에너지자원공학과) ;
  • 홍세선 (한국지질자원연구원 기후변화대응연구본부) ;
  • 이춘오 (한국지질자원연구원 지질재해연구본부) ;
  • 안웅산 (제주특별자치도 세계유산본부)
  • Kil, Youngwoo (Department of Energy and Resources Engineering, Chonnam National University) ;
  • Hong, Sei Sun (Climate Change Response Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Choon Oh (Geologic Hazards Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ahn, Ung San (World Heritage Office, Jeju Special Self-Governing Provincial Government)
  • 투고 : 2022.08.31
  • 심사 : 2022.09.14
  • 발행 : 2022.09.30

초록

제주도 중산간 지역인 해발고도 약 700 m에 위치하고 있는 동수악 분화구에서 분출한 알칼리현무암은 새롭게 발견된 스피넬 페리도타이트라는 맨틀암석을 포획하고 있다. 맨틀 내에서 평형 상태에 있었던 동수악 스피넬 페리도타이트는 잔쇄반상조직을 보이며, 감람석, 사방휘석, 단사휘석, 스피넬로 구성되어 있다. 동수악 스피넬 페리도타이트 구성광물의 주성분원소 및 미량원소 분석 결과는 동수악 스피넬 페리도타이트는 지하 약 66~88 km 깊이에서, 약 960℃~1068℃의 평형온도 하에 있었음을 지시해준다. 분별용융 모델로 계산된 동수악 스피넬 페리도타이트의 부분용융 정도는 약 1~3%이며, 새로운 광물을 포함하고 있지 않고 LREE가 부화된 패턴을 보이는 동수악 스피넬 페리도타이트는 규산염 용융체에 의해 은폐교대작용을 받아 부화 되었다.

Dongsuak crater, located in the mid-mountainous region of Jeju Island, is located at an altitude of about 700 m, and the newly discovered Dongsuak spinel peridotites was enclosed in Dongsuak alkaline basalt. The Dongsuak spinel peridotites are composed of olivine, orthopyroxene, clinopyroxene, and spinel with porphyroclastic texture under the an equilibrium state. The variations of mineral major and trace compositions indicates that the Dongsuak spinel peridotites originate at depth from 66 to 88 km under an equilibrium temperature of about 960℃~1068℃. The Dongsuak spinel peridotites have been undergone about 1~3% fractional melting. The LREE-enriched characteristics indicate that the Dongsuak spinel peridotites have been undergone cryptic metasomatism by silicate melt without new minerals.

키워드

과제정보

이 논문은 전남대학교 연구년교수 연구비(과제번호:2020-3842) 지원에 의하여 수행되었다. 논문을 상세히 검토하여 주신 익명의 심사위원에게 감사를 드린다.

참고문헌

  1. Bailey, D.K., 1970, Volatile flux, heat focusing and the generation of magma. In Mechanism of Igneous Intrusion (eds. Newall, G. and Rast, N.), Geological journal special issue 2, 177-186.
  2. Brey, G.P. and Kohler, T.P., 1990, Geothermobarometry in four phase lherzolites. II. New thermobarometers and practical assessment of existing thermobarometers. Journal of Petrology, 31, 1353-1378. https://doi.org/10.1093/petrology/31.6.1353
  3. Byerly, B.L., Jackson, M.G. and Bizimis, M., 2021, Carbonatite versus silicate melt metasomatism impacts grain scale 87Sr/86Sr and 143Nd/144Nd heterogeneity in polynesian mantle peridotite xenoliths. Geochemistry Geophysics Geosystems, 22, e2021GC009749. https://doi.org/10.1029/2021GC009749
  4. Choi, S-H., 2000, Oxidation state of mantle xenoliths from Jeju-do, South Korea. Geosciences Journal, 4, 211-220. https://doi.org/10.1007/BF02910139
  5. Choi, S-H., 2012, Lithospheric mantle beneath the Korean peninsula: Implications from peridotite xenoliths in alkali basalt., Journal of the Petrological Society of Korea. 21, 235-247. https://doi.org/10.7854/JPSK.2012.21.2.235
  6. Choi, S.H., Jwa, Y.-J. and Lee, H.Y., 2001, Geothermal gradient of the upper mantle beneath Jeju Island, Korea: Evidence from mantle xenoliths. Island Arc, 10, 175-193. https://doi.org/10.1046/j.1440-1738.2001.00317.x
  7. Choi, S-H., Lee, J-I., Park, C-H. and Moutte, J., 2002, Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. Island Arc, 11, 221-235. https://doi.org/10.1046/j.1440-1738.2002.00367.x
  8. Coltorti, M., Beccaluva, L., Bonadiman, C. and Salvinil, L., 2000, Glasses in mantle xenoliths as geochemical indicators of metasomatic agents. Earth and Planetary Science Letters, 183, 303-20. https://doi.org/10.1016/S0012-821X(00)00274-0
  9. Dawson, J.B., 1984, Contrasting types of upper mantle metasomatism? In Kimberlites II (eds. Kornprobst, J.), Elsevier, Amsterdam, 289-294.
  10. Droop, G.T.R., 1987, A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
  11. Han, Y-H., 2007, Trace element characteristics of clinopyroxene in peridotite xenoliths from Jeju island. MS thesis, Pusan National University, 45p.
  12. Han, U. and Keehn, Y., 1997, Thermal stress distributions within the lithosphere of East Sea of Korea. Journal of Korean Earth Science Society, 18, 176-82.
  13. Harte, B., 1977, Rock nomenclature with particular relation to deformation and recrystallization textures in olivinebearing xenolith. The Journal of Geology, 85, 279-288. https://doi.org/10.1086/628299
  14. Hofmann, A.W., 1988, Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90, 297-314. https://doi.org/10.1016/0012-821X(88)90132-X
  15. Hong, S-S., Lee, C-O., Lim, J., Lee, J-Y. and Ahn, U-S., 2021, Volcanic Activity of the Volcanoes in the Hallasan Natural Reserve, Jeju Island, Korea. Journal of the Korean Society of Economic and Environmental Geology, 54, 1-19. https://doi.org/10.9719/EEG.2021.54.1.1
  16. Ionov, D. A., O'Reilly, S. Y. and Griffin, W. L., 1998, A geotherm and lithospheric section for central Mongolia (Tariat Region). In Mantle Dynamics and Plate Interactions in East Asia (eds. Flower M. F. J., Chung S. L., Lo C. H. and Lee T. Y.), American Geophysical Union, 27, 127-53.
  17. Kil, Y., 2002, Mantle evolution associated with the Rio Grande Rift: Geochemistry and geothermobarometry of upper mantle xenolith. Colorado School of Mines Ph.D. thesis, 160p.
  18. Kil, Y., 2006, Characteristics of subcontinental lithospheric mantle beneath Baegryeong Isalnd, Korea: Spinel peridotite xenoliths. Island Arc, 14, 269-282. https://doi.org/10.1111/j.1440-1738.2006.00526.x
  19. Kil, Y., 2007, Geochemistry and petrogenesis of spinel lherzolite xenoliths from Boeun, Korea. Journal of Asian Earth Sciences, 29, 29-40. https://doi.org/10.1016/j.jseaes.2005.12.006
  20. Kil, Y. and Wendlandt, R.F., 2004, Pressure and temperature evolution of upper mantle under the Rio Grande Rift. Contribution to Mineralogy and Petrology, 148, 265-280. https://doi.org/10.1007/s00410-004-0608-9
  21. Kil, Y., Shin, H-J. and Ko, B., 2007, Magma Magma Pathway of Alkali Volcanic Rocks in Goseong, Gangwon-do, Korea. Journal of the Petrological Society of Korea, 16, 196-207.
  22. Kil, Y., Shin, H-J., Yun, S-H., Koh, J-S. and Ahn, U-S., 2008, Geochemical Characteristics of Mineral Phases in the Mantle Xenoliths from Sunheul-ri, Jeju Island. Journal of the Mineralogical Society of Korea, 21, 373-382.
  23. Kil, Y., Jung, H. and Yang, K., 2016, Li isotopic disequilibrium of the Cenozoic subcontinental lithospheric mantle in East Asia. Geoscience Journal, 20, 597-607. https://doi.org/10.1007/s12303-016-0024-y
  24. Kim, S.G. and Li, Q., 1998, 3-D Crustal Velocity Tomography in the Southern part of the Korean peninsula. Journal of Korea Society of Economic and Environmental Geology, 31, 127-39.
  25. Kim, Y-K., Lee, D-S., Song, Y-K. and Kim, S-E., 1988, Petrological of ultramafic nodules in Jogok-ri Basalt, Boun area. Journal of the Geological Society of Korea, 24, 57-66.
  26. Kim, K-H., Kagao, K., Jang, H-S., Sumino, H. and Chung, J-I., 2002, Nd, Sr and noble gas isotopic ompositions of alkali basaltic rocks and mantle xenoliths in the Baeryongdo. Journal of the Korean Society of Economic and Environmental Geology, 35, 523-532.
  27. Kim, H., Hwang, J. and Bak, S., 2019, Distribution of heat flows in Korea(1:1,700,000). Korea Institute of Energy and Resources. https://data.kigam.re.kr/map
  28. Lee, M-W, 1984, Petrology of mafic inclusion in Jeju volcanic rock. Journal of the Geological Society of Korea, 20, 306-313.
  29. Lee, H-Y., 2002, Petrology of spinel lherzolite from South Korea: Implication of P/T estimate. Journal of the Korean Earth Science Society, 23, 38-51.
  30. Lee, S.R. and Walker, R.J., 2006, Re-Os isotope systematics of mantle xenolith from South Korea: Evidence for complex growth and loss of lithosphereic mantle beneath East Asia. Chemical Geology, 231, 90-101. https://doi.org/10.1016/j.chemgeo.2006.01.003
  31. Lee, J-A., Kim, K-H., Lee, J-I. and Choo, M-K., 2013, Oxygen isotopic ratios for ultramafic xenoliths from the Korean peninsula. Journal of the Korean Earth Science Society, 34, 28-40. https://doi.org/10.5467/JKESS.2013.34.1.28
  32. Lim, J., 2018, 2018 Basic Research Service for Hallasan Nature Reserve. KIGAM, 79-6500655-000017-0, 589p.
  33. Menzies, M.A. and Hawkesworth, C.J., 1987, Mantle Metasomatism. Academic Press, London, 472p.
  34. Mercier, J.C. and Nicolas, A., 1975, Texture and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. Journal of Petrology, 16, 454-487. https://doi.org/10.1093/petrology/16.1.454
  35. Nam, B-H., 2008, Foliated peridotite xenoliths in basalt from Jeju Island. MS thesis, Pusan National University, 102p.
  36. Nixon, P.H., 1987, Mantle xenoliths. Wiley and Sons, New York, 844p.
  37. Park, K-H., 2000, Geological report of the Segwipo-Hahyori sheet(1:50,000). Korea Institute of Energy and Resources, 163p.
  38. Park, G., Kim, E., Kim, S-W., Jeong, H-Y. and Yang, K., 2018, Petrology of peridotite xenoliths from the Neocene alkaline basalt from Baegryeong Island. Journal of the Geological Society of Korea, 54, 75-92. https://doi.org/10.14770/jgsk.2018.54.1.75
  39. Pollack, H.N. and Chapman, S., 1977, On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics, 38, 279-96. https://doi.org/10.1016/0040-1951(77)90215-3
  40. Seo, M., Woo, Y., Park, G., Kim, E., Lim, H-S. and Yang, K., 2016, Mantle-derived CO2-fluid inclusions in peridotite xenoliths from the alkali basalt, Jeju Island, South Korea. Journal of the Petrological Society of Korea, 25, 39-50. https://doi.org/10.7854/JPSK.2016.25.1.39
  41. Shin, H-J., Kil, Y., Jin, M-S. and Lee, S-H., 2006, Petrological study on upper mantle xenoliths from Asan and Pyeongtaek area. Journal of the Geological Society of Korea, 42, 95-113.
  42. Umino, S. and Yoshizawa, E., 1996, Petrology of ultramafic xenoliths from Kishyuku lava, Fukue-jima, Southwest Japan. Contributions to Mineralogy and Petrology, 124, 154-66. https://doi.org/10.1007/s004100050182
  43. Woo, Y., Yang, K., Kil, Y., Yun, S-H. and Arai, S., 2014, Silica- and LREE-enriched spinel peridotite xenoliths from the Quaternary intraplate alkali basalt, Jeju Island, South Korea: Old subarc fragments? Lithos, 208-209, 312-323. https://doi.org/10.1016/j.lithos.2014.09.003
  44. Yang, K., 2004, Fluid inclusions trapped in xenoliths from the lower crust/upper mantle beneath Jeju Island (I): a preliminary study. Journal of the Petrological Society of Korea, 13, 34-45.
  45. Yu, J-E., Junm S-W. and Yang, K., 2011, Silica enrichment in mantle xenoliths trapped in basalt, Jeju Island: Modal metasomatic evidence. Journal of the Petrological Society of Korea, 20, 61-75. https://doi.org/10.7854/JPSK.2011.20.1.061
  46. Yu, J-E., Yang, K., Jeong, H. and Kil, Y., 2012, Petrology of pyroxenite xenoliths enclosed in basaltic rocks from Shinsanri of Jeju Island. Journal of the Geological Society of Korea, 48, 299-312.
  47. Yun, S-H., Koh, J-S. and Anh, J-Y., 1998, A study on the spinel-lherzolite xenolith in the alkali basalt from eastern Cheju Island, Korea. Journal of the Korean Society of Economic and Environmental Geology, 31, 447-458.
  48. Xu, X., O'Reilly, S.Y., Griffin, W.L., Zhou, X. and Huang, X., 1998, The nature of the Cenozoic lithosphere at Nushan, Eastern China. In Mantle Dynamics and Plate Interactions in East Asia (eds. Flower, M.F.J., Chung, S.L., Lo C.H. and Lee, T.Y.), American Geophysical Union, 27, 167-95.