DOI QR코드

DOI QR Code

Improvement of Carbon Dioxide Reduction Efficiency of Titanium Dioxide Photocatalyst Using 1-propanol

1-propanol 첨가에 따른 이산화타이타늄(TiO2) 광 촉매의 비표면적 향상 및 이산화탄소 환원 효율 향상

  • Received : 2022.08.23
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

Recently, the problem of global warming caused by greenhouse gases is getting serious due to the development of industry and the increase in transportation means. Accordingly, the need for a technology to reduce carbon dioxide, which accounts for most of the greenhouse gas, is increasing. Among them, a catalyst for converting carbon dioxide into fuel is being actively studied. Catalysts for reducing carbon dioxide are classified into thermal catalysts and photocatalysts. In particular, the photocatalyst has the advantage that carbon dioxide can be reduced only by irradiating ultraviolet rays at room temperature without high temperature or additional gas. TiO2 is widely used as a photocatalyst because it is non-toxic and has high stability, but has a disadvantage of low carbon dioxide reduction efficiency. To increase the reduction efficiency, 1-propanol was used in the synthesis process. This prevents agglomeration of the catalyst and increases the specific surface area and pores of TiO2, thereby increasing the surface area in contact with carbon dioxide. As a result of measuring the CO2 reduction efficiency, it was confirmed that the efficiency of TiO2 with 1-propanol and TiO2 without 1-propanol was 19% and 12.3%, respectively, and the former showed a 1.5 times improved efficiency.

Keywords

Acknowledgement

이 논문은 2020년도 정부(과학기술정보통신부)의 재원으로 연구개발특구진흥재단의 지원을 받아 수행된 연구임(2020-DD-UP0348). 본 논문은 한국생산기술연구원 기본사업 "산업재해 및 안전사고 방지를 위한 변색성 유해가스 감지 실용화 센서 시스템 개발 (Kitech UI-22-0016)" 지원으로 수행한 연구임. 본 연구는 2021년도 중소벤처기업부의 기술개발사업 지원에 의한 연구임 [S3177927].

References

  1. C. Horowitz, "Paris Agreement", Int. Leg. Mater., Vol. 55, No. 4, pp. 740-755, 2016. https://doi.org/10.1017/S0020782900004253
  2. https://worldpopulationreview.com/country-rankings/co2-emissions-by-country (retrieved on Aug. 23, 2022)
  3. A. I. Osman, M. Hefny, M. I. A. A. Maksoud, A. M. Elgarahy, and D. W. Rooney, "Recent advances in carbon capture storage and utilisation technologies: a review", Environ. Chem. Lett., Vol. 19, No. 1, pp. 797-849, 2021. https://doi.org/10.1007/s10311-020-01133-3
  4. D. Jiang, Y. Zhou, Q. Zhang, Q. Song, C. Zhou, X. Shi, and D. Li, "Synergistic Integration of AuCu Co-Catalyst with Oxygen Vacancies on TiO2 for Efficient Photocatalytic Conversion of CO2 to CH4", ACS Appl. Mater. Interfaces, Vol. 13, No. 39, pp. 46772-46782, 2021. https://doi.org/10.1021/acsami.1c14371
  5. J. Hu, L. Buelens, S. A. Theofanidis, and V. V. Galvita, "CO2 conversion to CO by auto-thermal catalyst-assisted chemical looping", J. CO2 Util., Vol. 16, No. 1, pp. 8-16, 2016. https://doi.org/10.1016/j.jcou.2016.05.006
  6. A. Razzaq, and S.I. In, "TiO2 based nanostructures for photocatalytic CO2 conversion to valuable chemicals", Micromachines, Vol. 10, No. 5, pp. 326-350, 2019. https://doi.org/10.3390/mi10050326
  7. H. Park, H. H. Ou, U. Kang, J. Choi, and M. R. Hoffmann, "Photocatalytic conversion of carbon dioxide to methane on TiO2/CdS in aqueous isopropanol solution", Catal. Today, Vol. 266, No. 1, pp. 153-159, 2016. https://doi.org/10.1016/j.cattod.2015.09.017
  8. T. Ochiai, and A. Fujishima, "Photoelectrochemical properties of TiO2 photocatalyst and its applications for environmental purification", J. Photochem. Photobiol. C, Vol. 13, No. 4, pp. 247-262, 2012. https://doi.org/10.1016/j.jphotochemrev.2012.07.001
  9. J. Zhang, P. Zhou, J. Liu, and J. Yu, "New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2", Phys. Chem. Chem. Phys., Vol. 16, pp. 20382-20386, 2014. https://doi.org/10.1039/C4CP02201G
  10. H. Choi, S. Khan, J. Choi, D. Dinh, S. Y. Lee, U. Paik, S. H. Cho, and S. Kim, "Synergetic control of band gap and structural transformation for optimizing TiO2 photocatalysts", Appl. Catal. B., Vol. 210, No. 5, pp. 513-521, 2017. https://doi.org/10.1016/j.apcatb.2017.04.020
  11. O. Wiranwetchayan, S. Promnopas, T. Thongem, A. Chaipanich, and S. Thongtem, "Effect of alcohol solvents on TiO2 films prepared by sol-gel method", Surf., Vol. 326, No. A, pp. 310-315, 2017.
  12. S. N. habisreutinger, L. S. Mende, and J. K. Stolarczyk, "Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors", Angew. Chem. Int. Ed., Vol. 52, No. 29, pp. 7372-7408, 2013. https://doi.org/10.1002/anie.201207199
  13. J. Wang, J. Yu, X. Zhu, and X. Z. Kong, "Preparation of hollow TiO2 nanoparticles through TiO2 deposition on polystyrene latex particles and characterizations of their structure and photocatalytic activity", Nanoscale Res. Lett., Vol. 7, No. 1, pp. 646-653, 2012. https://doi.org/10.1186/1556-276X-7-646
  14. J. He, Y. Du, Y. Bai, J. An, X. Cai, Y. Chen, P. Wang, X. Yang, and Q. Feng, "Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity", Molecules, Vol. 24, No. 16, pp. 2996-3009, 2019. https://doi.org/10.3390/molecules24162996
  15. R. Bardestani, G. S. Patience, and S. Kaliaguine, "Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT", Can. J. Chem. Eng., Vol. 97, No. 11, pp. 2781-2791, 2012
  16. Y. Mi, and Y. Weng, "Band Alignment and Controllable Electron Migration between Rutile and Anatase TiO2", Sci. Rep., Vol. 5, No. 1, pp. 11482-11491, 2015. https://doi.org/10.1038/srep11482
  17. D. O. Scanlon, C. W. Dunnill, J. Buckeridge, S. A. Shevlin, A. J. Logsdail, S. M. Woodley, C. R. A. Catlow, M. J. Powell, R. G. Palgrave, I. P. Parkin, G. W. Watson, T. W. Keal, P. Sherwood, A. Walsh, and A. A. Sokol, "Band alignment of rutile and anatase TiO2", Nat. Mater. Vol. 12, No. 1, pp. 798-801, 2013. https://doi.org/10.1038/nmat3697
  18. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang, and Z. Jin, "Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals", Adv. Sci., Vol. 5, No. 1, pp. 1700275-1700298, 2017.