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I. INTRODUCTION  

Three-dimensional (3D) object detection is considered 
important in computer vision applications that are deeply 
related to the real world, such as augmented reality, auton-
omous driving, and robotics. Most 3D object detection 
methods use RGB image as input with sensor devices that 
provide depth information such as LiDAR and Radar. Alt-
hough LiDAR-based research [1-4] has developed a lot, in-
terest in camera-based [5-11] has recently increased. This is 
because LiDAR is too expensive, and information on far 
away objects is not available. Also, the LiDAR point cloud 
is also very sparse, so very efficient transformation algo-
rithm is required. Camera-based 3D object detection is 
much more advantageous in aspect of price and has rich in-
formation about far away objects. However, the disad-
vantage is that the accuracy is lower than the methods using 
sensor devices because the depth information must be esti-
mated only based on the images.  

Survey work for various approaches of 3D object detec-
tion has been published several times before [12-13]. How-
ever, existing survey works [12-13] have mainly explained 
the difference between the modality methods, such as cam-
era based, point cloud, and sensor fusion. In this paper, we 
will make survey of the latest models for 3D perception and 
classification with only camera image. In particular, an 

analysis of the multi-view-based method that has recently 
getting attention is also included. There are three ap-
proaches for image-based object detection, which is de-
pending on the number of cameras used. 

The first is monocular-based 3D object detection [5-6], 
which is an approach of detection using only one image 
from a camera as an input. To predict 3D information of the 
objects of interest, the depth information must be obtained 
well. Since only one camera is used, there is a problem that 
it is difficult to estimate information on depth. To solve this 
problem, some methods have recently been introduced to 
predict 3D information by utilizing geometry prior. Never-
theless, monocular-based methods perform poorly com-
pared to other methods due to lack of informative features. 

The second approach is stereo-based 3D object detection 
[7-8], which utilizes disparity estimation for two images ob-
tained by placing two cameras on the left and right sides. 
Since more accurate information on depth can be obtained 
by disparity estimation, comparable performance can be 
achieved even when compared to the LiDAR-based meth-
ods.  

The last approach to introduce is multi-view 3D object 
detection [9-11]. The multi-view method utilizes multiple 
cameras in the ego car to make the field of view surround-
ing the car as input. In the existing monocular and stereo 
methods, 3D object detection and map segmentation were 

 
A Survey for 3D Object Detection Algorithms from Images 

 
Han-Lim Lee1, Ye-ji Kim1, Byung-Gyu Kim1* 

 
Abstract 

Image-based 3D object detection is one of the important and difficult problems in autonomous driving and robotics, and aims to find and 
represent the location, dimension and orientation of the object of interest. It generates three dimensional (3D) bounding boxes with only 2D 
images obtained from cameras, so there is no need for devices that provide accurate depth information such as LiDAR or Radar. Image-based 
methods can be divided into three main categories: monocular, stereo, and multi-view 3D object detection. In this paper, we investigate the 
recent state-of-the-art models of the above three categories. In the multi-view 3D object detection, which appeared together with the release 
of the new benchmark datasets, NuScenes and Waymo, we discuss the differences from the existing monocular and stereo methods. Also, we 
analyze their performance and discuss the advantages and disadvantages of them. Finally, we conclude the remaining challenges and a future 
direction in this field.  

Key Words: 3D Object Detection, Autonomous Driving, Monocular Image Processing, Multi-View Image Processing, Stereo Image Processing.

Manuscript received September 9, 2022; Revised September 19, 2022; Accepted September 20, 2022. (ID No. JMIS-22M-09-032)  
Corresponding Author (*): Byung-Gyu Kim, +82-2-2077-7293, bg.kim@sookmyung.ac.kr 
1Department of IT Engineering, Sookmyung Women’s University, Seoul, Korea, hl.lee@ivpl.sookmyung.ac.kr, yj.kim@ivpl.sook-

myung.ac.kr, bg.kim@sookmyung.ac.kr 



A Survey for 3D Object Detection Algorithms from Images 

184 

 

considered as separate tasks. However, a technique using 
multi-camera images has the advantage of being able to 
generate a BEV feature map centered on ego cars. 

This work focuses on reviewing the state-of-the-art ap-
proaches for monocular, stereo, and multi-view 3D object 
detection mentioned above. We summarize the challenges 
and discuss the future research. 

 

II. IMAGE-BASED 3D OBJECT 
DETECTION 

2.1. Monocular-Based 3D Object Detection 
Monocular 3D object detection is a task that estimates 

3D information such as location, direction, and size of an 
object of interest using a single image as an input. Only by 
augmenting the 2D image feature or designing an efficient 
algorithm, the available feature can be refined. To solve the 
problem of severely lacking depth information compared to 
LiDAR-based methods [1-4, 12-13] or other camera-based 
methods [5-11], geometry prior is recently being used to-
gether. 

Geometry Uncertainty Projection Network for Monocu-
lar 3D Object Detection (GUPNet) [5] proposed a GUP 
module that represent the inferences for depth as distribu-
tions using the geometry information. Since it uses depth as 
a continuous value rather than a discrete value, more accu-
rate depth estimation is possible. As you can see in Fig 1, 
the GUP module estimates the depth as the distribution 
form. Another key design of GUPNet is hierarchical task 
learning (HTL) algorithm. 2D/3D height estimation is a 
very important issue in 3D object detection, as it can lead 
to incorrect depth estimation results. HTL strategy is to 
train the next task after the current task is well-trained. It 
proposed to reduce the instability in height estimation, 
which occurs frequently in the early of training. As shown 
in Table 1, GUPNet achieved comparable performance 
compared to CaDDN [11], a network using a camera with 
LiDAR sensor. 

Learning Auxiliary Monocular Contexts Help Monocu-
lar 3D Object Detection (MonoCon) [2] proposed a method 

using only image without any extra information such as li-
dar, CAD model or depth estimation module. The main idea 
of MonoCon is to utilize well-posed 2D contexts for auxil-
iary learning tasks to solve ill-posed problem. As shown in 
Fig. 2, it generates monocular contexts about geometric in-
formation. There are four types of auxiliary contexts: 1) The 
heatmaps of the projected 8 corner and center points of the 
3D bounding boxes, 2) The offset vectors from the center 
point of 2D bounding box to the projected 8 corner points 
of 3D bounding box, 3) The size of 2D bounding box, 4) 

Table 1. Performance comparison on the car category in the Kitti official test set [16] – average precision of bird’s eye view (APBEV). 

Methods Type 
APBEV (IoU=0.7) AP3d (IoU=0.7) 

Easy Moderate Hard Easy Moderate Hard 

GUPNet [5] Mono 0.303 0.212 0.182 0.201 0.142 0.118 
MonoCon [6] Mono 0.311 0.221 0.190 0.225 0.165 0.140 

Stereo R-CNN [7] Stereo 0.619 0.413 0.334 0.476 0.302 0.237 
Disp R-CNN [8] Stereo 0.738 0.523 0.436 0.585 0.379 0.319 

CaDDN [11] Mono & LiDAR 0.279 0.189 0.172 0.192 0.134 0.115 
DSGN [12] Stereo & LiDAR 0.829 0.651 0.566 0.735 0.522 0.451 

 
Fig. 2. Examples of monocular context [6]. 

Fig. 1. An overview of GUP module [5]. 
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The residual of a keypoint location. Even though it utilized 
simple contexts for an additional feature learning, Mono-
Con showed better performance than GUPNet [5]. 

  
2.2. Stereo-Based 3D Object Detection 

Compared to the monocular-based detection, stereo-
based can obtain richer depth information by conducting 
the disparity estimation using left and right images. There-
fore, this method can reduce the ill-posed problem that has 
not been solved in the monocular method. Despite the low-
priced of setting it up. It shows comparable performance 
compared to LiDAR-based approaches without using ex-
pensive sensor devices. 

The first model to introduce is Stereo R-CNN based 3D 
Object Detection for Autonomous Driving (Stereo R-CNN) 
[7]. It is a network that simultaneously detects and  as-
sociates objects from stereo images. The algorithm is sim-
ple: First, the backbone network extracts the 2D feature 
from left and right images. Second, the extracted features 
are input into the stereo region proposal network (RPN) to 
concatenate them. And then, they align the proposed Re-
gion of interest (RoI) to each left-right feature map.         

Finally, the aligned features are utilized to estimate the 
3D bounding boxes by predicting the key-points of 3D 
boxes and conducting stereo regression. This approach out-
performed other state-of-the-art image-based methods over 
30% average precision of bird’s eye view and 3D boxes. 

The Second is Stereo 3D Object Detection via Shape 
Prior Guided Instance Disparity Estimation (Disp R-CNN) 
[8]. Li et al. proposed a more advanced network that Stereo 
R-CNN [7]. The existing stereo-based 3D object detection 
conduct the disparity estimation of the full-frame level. 
However, this approach often fails to generate the accurate 
disparity for low textured objects like vehicle. Also, since 
the area of the object of interest is much smaller than the 
background, there are many unnecessary computations. To 
solve these problems, Disp R-CNN proposes object detec-
tion based on the disparity estimation of the instance level. 
The process of instance-level estimation is as follows: 1) 
specifying the object region in the feature map after 
RoIAlign, 2) estimating disparity of the instance-level us-
ing full-frame disparity and coordinates of the left border of 
left-right bounding boxes.  

The instance-level disparity estimation is illustrated Fig. 
3. Meanwhile, most driving datasets [16-18] do not provide 
ground-truth for instance disparity, so there is a problem 
that the disparity cannot be learned. To solve the problem, 
they needed to create pseudo ground-truth generation with-
out LiDAR points. They proposed a process that uses CAD 
model to generate dense pseudo ground-truth. As a result, it 
is possible to learn the object shape prior. Disp R-CNN 

achieved not only state-of-the-art performance, but also 
faster inference time than other stereo-based models by re-
ducing computation with novel disparity estimation.  

As shown in the Table 1, Disp R-CNN performs worse 
than DSGN [14] which is a stereo 3D object detection 
method based on LiDAR. But it is better than Stereo R-
CNN. 
  
2.3. Multi-View 3D Object Detection 

Many existing 3D Object detection used KITTI Datasets 
[13] as training datasets. The KITTI dataset is a collection 
of data with two RGB cameras, so only the Monocular and 
Stereo methods were possible. After that, multi-camera 
driving datasets such as NuScenes [17] and Waymo [18] 
datasets are appeared, allowing multi-view 3D object de-
tection research.  

In this task, bird’s-eye-view (BEV) representation, 
which is a map centered on ego-car, can be used to intui-
tively visualize the location, size, and orientation of the ob-
ject of interest. In this paper, we introduce transformer-
based approaches that recently shown excellent perfor-
mance. In 2D object detection, the initial transformer-based 
model was DETR [19], which used object query to perform 
detection on the output of the decoder. The transformer-
based model does not require NMS processing, and this is 
the same in 3D detection. Note that in multi-view detection, 
when feeding images into a model, do not divide the image 
into patches like 2D detection. They used multi-camera im-
ages as input like patches. 

BEVFormer [9] generates bird’s eye view (BEV) Fea-
tures that combines temporary and spatial information to 
perform 3D object detection and map segmentation tasks. 
The main components of the BEVFormer are BEV query, 

Fig. 3. Instance-level disparity estimation [8]. 

Fig. 4. Overall architecture of BEVFormer [9]. 
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spatial cross attention, and temporal self-attention.  
First, BEV query is a grid shaped query with the same 

size as BEV plane and consists of learnable parameters. 
Therefore, the space of the real world can be represented by 
BEV query. BEV query is first used in the temporal self-
attention step to query temporal information from the pre-
vious BEV features. Then, BEV query is used to find spatial 
information through spatial cross attention between multi-
view features. These output features are used as input to the 
feed-forward network, and as a result, the BEV feature is 
updated. The updated feature is used as the input of the next 
encoder layer.  

After doing the same work on the 6 encoder layers, the 
BEV features BEVt at the timestamp t is completed. With 
that, they input to the detection head and segmentation head 
to predict the 3D bounding boxes and map segmentation. 
Finally, the BEVt is used as input for temporal self-attention 
at the next timestamp t-1. The temporal self-attention pro-
posed by BEVFormer shows excellent performance of the 
velocity estimation than other existing camera-based 
method. 

In Table 2, the mean average velocity error (mAVE) de-
creased by more than 5% compared to other camera-based 
models. Also, the recent camera-only methods tend to add 
temporal self-attention to improve the performance. 

PETR [10] proposed a new position embedding for 
multi-view 3D object detection. They made a 3D coordi-
nates generator module to represent 2D features like 3D 
features. It transforms the camera frustum space to the 3D 
world space. Meshgrid coordinates are shared by multi-
view features, so the coordinates on 3D world space can be 
calculated by reversing the 3D projection expression with 
different camera parameters.  

The pipeline of PETR is as follows. First, 2D feature is 
extracted from each view image using a backbone network 
such as ResNet [20] or VovNet-99 [21]. The 3D coordinate 
and 2D feature are then used together as inputs to the 3D 
position encoder to generate the 3D position-aware feature. 
The decoder uses these results and object query as input to 
predict the class and 3D bounding boxes of objects in each 
scene. As you can see in Fig. 5., 3D position embedding 
shows that the information related to position can be found 
well in surrounding images. 

In general, 3D object detection is designed based on a 
Cartesian coordinate system using a perpendicular axis. Po-
larFormer [11] applied the polar coordinate system, noting 
that the real world seen in each camera from a ego-car per-
spective is a wedge shape. It is illustrated in Fig. 6. with the 
BEV map on cartesian coordinate and polar coordinate. 
When polar coordinate is applied, it can better represent 
nearby objects as in real world. Although it is difficult to 
implement grid shape as non-rectangular to apply polar co-
ordinate to deep learning networks, this paper implements 
it in a novel way.  

The pipeline of the Polar Former is as follows. First, the 
image of each view is fed into the backbone and FPN to 
extract the multi-scale 2D image feature. These feature 
maps are used as input to the cross-plane encoder, which  
converts the column of each feature into a polar ray in se-
quence-to-sequence format. In the polar alignment module, 
the generated polar relays are combined to create a polar 
BEV map. Then, the multi-scale BEV map is fed into the 
Polar BEV encoder to learn richer information across all 
feature scales and generate more refined BEV features. Fi-
nally, polar head utilizes multi-scale polar BEV features to 
predict the 3D bounding box on the Polar coordinate system 
and classifies the category of the object. 

Table 2. Performance comparison on nuScenes test set.

Methods Modality NDS mAP mATE mASE mAOE mAVE mAAE 

BEVFormer [6] Multi-view 0.569 0.481 0.582 0.256 0.375 0.378 0.125 
PETR [7] Multi-view 0.504 0.441 0.593 0.249 0.383 0.808 0.132 

Polar Former [8] Multi-view 0.572 0.493 0.556 0.256 0.364 0.440 0.127 
SSN [4] LiDAR 0.569 0.463 - - - - - 

CenterPoint [3] LiDAR 0.655 0.580 - - - - - 

Fig. 6. The object detection results (a) based on Cartesian coordi-
nate system and (b) based polar coordinate system. 

Fig. 5. The visualization of 3D position embedding similarity. 
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In Multi-view 3D object detection, features are extracted 
using a combination of backbone and FPN [22] to find ob-
jects of various sizes. In addition, they usually use ResNet-
101 [20] and VovNet2-99 [21] and Swin- Transformer [23] 
as a backbone network. So far, it is difficult to detect real-
time 3D object due to the large latency while extracting im-
age features from the Backbone network. Also, it is still dif-
ficult to detect objects such as pedestrians and cyclists 
smaller than cars. As small object detection well in autono-
mous driving is important to ensure safety, research on this 
aspect is also required. 

 

III. DATASETS 

In this section, we will analyze two frequently used 
datasets in 3D object detection. KITTI dataset [14] re-
leased in 2012, and most monocular and stereo studies 
still widely use it. KITTI dataset uses only two RGB 
cameras, it can be used for the monocular method and 
the stereo method. Since multi-view images are not pro-
vided on the KITTI dataset, other new datasets were 
needed for research related to multi-view. Meanwhile, 
they provide point cloud information surrounding the 
ego-car by installing a laser scanner on the car. Although 
it is an old dataset, various tasks can be studied with 
KITTI data using various sensor modalities. In addition 
to object detection, they have opened several bench-
marks such as flow, depth, odometry, and line detection. 
NuScenes dataset [17] was inspired by the KITTI da-
taset. To collect this dataset, they installed 6 cameras 
looking in various directions on the ego-car, one LiDAR, 
and five radars, thus providing more meta information 
than KITTI [14]. KITTI provides only 22 scenes, while 
it provides 1K scenes. In addition, KITTI has 15 k anno-
tated frames, labeling only for 8 classes, while it is about 
2.7 times more than that, and the number of classes is 23. 
Therefore, the nuScenes dataset is a much larger dataset 
in many aspects. 

   
3.1. KITTI Dataset 
3.1.1. Datasets 

KITTI dataset [17] consists of 7481 training images and 
7518 test images. The test dataset does not have ground-
truth, so the dataset for validation is part of the training da-
taset. The answer label consists of three classes: Car, Cylist, 
and Pedestrian.  

 
3.1.2. Evaluation Metrics 

KITTI benchmark evaluates performance with average 
precision (AP). AP3D represents the AP of 3D bounding 

boxes, and APBEV represents the AP of bird's eye view. Dif-
ficulties are defined in three levels: easy, moderate, and 
hard. The criteria for occlusion and truncation are different 
depending on each level. 

 
3.2. NuScenes Dataset 
3.2.1. Datasets 

The nuScenes [17] dataset contains 1,000 driving scenes 
collected by Boston and Singapore. Each scene is about 20 
seconds long, and there are 3D bounding box annotations at 
2 Hz for 23 object classes. It is a driving scene taken with 6 
cameras, so there are about 1.4 M camera images. 

 
3.2.2. Evaluation Metrics 

The nuScenes benchmark use 7 defined metrics. The first 
metric is the average precision (AP) metric considering the 
2D center distance on the ground plane. And there are five 
true positive (TP) metrics that measure translation, scale, 
orientation, velocity, and attribute errors. The meanings of 
metric in Table 2. are as follows: Average translation error 
(ATE) is a metric that calculates the Euclidean center dis-
tance with a mean average translation error. Average scale 
Error (ASE) is a metric, which aligns the center and orien-
tation and then calculates the 1-intersection of union (IOU) 
between the 3D bounding. Average orientation error (AOE) 
calculates the yaw angle difference between the predicted 
bounding box and the ground-truth bounding box. Average 
velocity error (AVE) calculates the difference in absolute 
velocity. average attribute error (AAE) is a mean average 
attribute error, which means the error rate of object classi-
fication. These TP metrics are calculated separately for each 
class, and mATE, mASE, mAOE, mAVE, and mAAE, 
which are calculated on average, are used in Table 2. They 
also use a nuScenes detection score (NDS) by computing a 
weighted sum of AP and TP metrics. 

  

IV. PERFORMANCE COMPARISON 

We will compare the performance of the monocular and 
stereo detection models in the KITTI official benchmark 
[16]. As shown in Table 1, the monocular 3D object detec-
tion [5-6, 11] achieved similar performance with or without 
LiDAR. Stereo 3D object detection using only camera [7-8] 
achieved slightly lower performance than the LiDAR 
method, DSGN [9]. However, they outperformed CaDDN 
[5] using a single camera and LiDAR, which shows that the 
using stereo cameras can learning richer semantics.  

In Table 2, the performance of multi-view methods using 
nuScenes [17] dataset was compared. Among the models 
that did not use Lidar [6-8], PETR [7] achieved the lowest 
performance because it did not utilize temporal information 
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for learning. As shown in Table 2, the temporal self-atten-
tion which has been first proposed by BEVFormer [6] re-
duced the error of velocity. Compared to SSN [4] and Cen-
terPoint [3], which are models that utilize Point cloud to-
gether, these models achieved comparable performance. 

 

V. CONCLUSION AND DICUSSION 

In this paper, we have reviewed the monocular, stereo 
and multi-view 3D object detection methods. The camera-
based methods still have many problems, such as incorrect 
3D inference results or poor detection of small objects. 

Monocular detection has a problem that geometric prior 
that can be obtained from one image is very insufficient. To 
solve these problems, modern monocular-based papers use 
the strategy to find contexts that can be learned in an image. 
Stereo-based 3D object detection often utilized disparity es-
timation to estimate the 3D information such as location, 
dimension, and orientation. Utilizing the disparity infor-
mation to train the model enables more accurate detection, 
which means that parameters related to the camera are also 
important for 3D object detection. Finally, multi-view de-
tection using the surrounding images has the advantage of 
being able to utilize more information such as camera pa-
rameters than monocular or stereo.  

In the field of autonomous driving and robotics, most ob-
jects of interest usually move quickly. But there is a prob-
lem that all three approaches use the backbone with the 
large scale. This means that it is still difficult to apply to 
real-time detection. Therefore, efficient feature extraction 
will be important in future studies. In addition, there is an 
important problem that detection of small objects is still dif-
ficult. Enabling precise detection of small objects such as 
pedestrians or obstacles will also be an important issue for 
future research. If these problems are completely solved, 
image-based 3D object detection will be successful in the 
future, even without LiDAR system. 
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