Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries

이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성

  • Hwang, Sung Won (Department of System Semiconductor Engineering, Sangmyung University)
  • 황성원 (상명대학교 시스템반도체공학과)
  • Received : 2022.09.14
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

Keywords

References

  1. K. Xu, ''Electrolytes and Interphases in Li-Ion Batteries and Beyond" Chemical Reviews, vol. 114, no. 23, pp.11503-11618, 2014. https://doi.org/10.1021/cr500003w
  2. Z. Yu, D. G. Mackanic, Y. Cui and Z. Bao, ''A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes,'' Joule, vol. 3, no. 11, pp. 2761-2776, 2019. https://doi.org/10.1016/j.joule.2019.07.025
  3. X. Xu, Z. Wen, X. Wu, X. Yang and Z. Gu, ''Lithium Ion-Conducting Glass-Ceramics of Li1.5Al0.5Ge1.5 (PO4)3-xLi2O (x=0.0-0.20) with Good Electrical and Electrochemical Properties,'' Journal of the American Ceramic Society, vol. 90, no. 9, pp. 2802-2806, 2007. https://doi.org/10.1111/j.1551-2916.2007.01827.x
  4. D. Lin, Y. Liu, Z. Liang, J. Xie and Y. Cui, ''Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes,'' Nature Nanotechnology, vol.11, pp. 626-632, 2016. https://doi.org/10.1038/nnano.2016.32
  5. A. Manthiram, X. Yu and S. Wang, ''Lithium battery chemistries enabled by solid-state electrolytes,'' Nature Reviews Materials, vol. 2, no. 16103, pp. 1-16, 2017.
  6. P. G. Bruce and A. R. West, ''The A-C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 - x GeO4, and a Model for Intergranular Constriction Resistances patterns,'' Journal of The Electrochemical Society, vol. 130, no. 3, pp. 662-663, 1983. https://doi.org/10.1149/1.2119778
  7. A. Emly, E. Kioupakis and A. Van der Ven, "Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors," Chemistry of Materials, vol. 25, no. 23, pp. 4663-4670, 2013. https://doi.org/10.1021/cm4016222
  8. X. Han, Y. Gong, K. K. Fu, E. D. Wachsman and L. Hu, ''Negating interfacial impedance in garnet-based solid-state Li metal batteries,'' Nature Materials, vol. 16, pp. 572-579, 2017. https://doi.org/10.1038/nmat4821
  9. F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, ''A large area flexible array sensors using screen printing technology,'' Advanced Materials, vol. 17, no. 7, pp. 918-921, 2005. https://doi.org/10.1002/adma.200401286
  10. M. Matsuo, Y. Nakamori, S.-i. Orimo, H. Maekawa and H. Takamura, ''Lithium superionic conduction in lithium borohydride accompanied by structural transition,'' Applied Physics Letters, vol. 91, no. 22, pp. 224103- 224106, 2007. https://doi.org/10.1063/1.2817934
  11. W. Liu, S. W. Lee, D. Lin, A. D. Sendek and Y. Cui, ''Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires,'' Nature Energy, vol. 2, no. 17035, pp. 1-7, 2017.
  12. J. S. Thokchom and B. Kumar, ''Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic,'' Journal of Power Sources, vol. 185, no. 1, pp. 480-485, 2008. https://doi.org/10.1016/j.jpowsour.2008.07.009
  13. M. Guin, S. Indris, M. Kaus, H. Ehrenberg and O. Guillon, ''Stability of NASICON materials against water and CO2 uptake'' Solid State Ionics, vol. 302, no. 1, pp. 102-106, 2017. https://doi.org/10.1016/j.ssi.2016.11.006
  14. J. H. Lee, "A Study of Dynamic Properties of Graphene-Nanoribbon Memory", Journal of Semiconductor & Display Technology, v.13, no.2, pp.53-56, 2014.
  15. S. Jung, Y. S. Kim, K. H., "Effect of Post-annealing Treatment on Copper Oxide based Heterojunction Solar Cells", Journal of Semiconductor & Display Technology, v.19, pp.55-59, 2020.
  16. Choi, J. Roh, S,Seo, Hwa-Il., "A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell", Journal of Semiconductor & Display Technology, v.18, pp.12-17, 2019.
  17. Z. Sun, L. Liu, Y. Lu, J. Zhao and H. An, ''Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor,'' Journal of the European Ceramic Society, vol. 39, no. 2, pp. 402-408, 2019. https://doi.org/10.1016/j.jeurceramsoc.2018.09.025
  18. P. Hartmann, T. Leichtweiss, M. R. Busche, P. Adelhelm and J. Janek, ''Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes,'' The Journal of Physical Chemistry C, vol. 117, no. 41, pp. 21064-21074, 2013. https://doi.org/10.1021/jp4051275
  19. J. A. Lewis, F. J. Q. Cortes, M. G. Boebinger, M. Chi and M. T. McDowell, ''Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure'' ACS (American Chemical Society) Energy Letter, vol. 4, no. 2, pp. 591-599, 2019.
  20. Y. Liu, C. Li, B. Li, H. Song and P. He et al., ''Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries," Advanced Energy Materials, vol. 8, no. 16, pp. 1702374-1702379, 2018. https://doi.org/10.1002/aenm.201702374
  21. Z. Zhang, S. Chen, J. Yang, P. Cui and X. Xu, ''Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode,'' Electrochimica Acta, vol. 297, no. 1, pp. 281-287, 2019. https://doi.org/10.1016/j.electacta.2018.11.206
  22. S. K. Singh, H. Gupta, Y. L. Verma and R. K. Singh, ''Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery,'' Energy, vol. 150, no. 1, pp. 890-900, 2018. https://doi.org/10.1016/j.energy.2018.03.024
  23. D. R. MacFarlane, M. Forsyth, P. C. Howlett, S. Zhang and J. Zhang, ''Ionic liquids and their solid-state analogues as materials for energy generation and storage,'' Nature Reviews Materials, vol. 1, no. 15005, pp. 1-10, 2016.
  24. I. A. Shkrob, T. W. Marin, Y. Zhu and D. P. Abraham, ''Why Bis(fluorosulfonyl)imide Is a Magic Anion for Electrochemistry'' The Journal of Physical Chemistry C, vol. 118, no. 34, pp. 19661-19671, 2014. https://doi.org/10.1021/jp506567p
  25. S. Xiong, K. Xie, E. Blomberg, P. Jacobsson and A. Matic, ''Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries,'' Journal of Power Sources, vol. 252, no. 1, pp. 150-155, 2014. https://doi.org/10.1016/j.jpowsour.2013.11.119
  26. Y. Lu, Z. Tu and L. A. Archer, ''Stable lithium electrodeposition in liquid and nanoporous solid electrolytes,'' Nature Materials, vol. 13, no. 1, pp. 961-969, 2014. https://doi.org/10.1038/nmat4041
  27. P. Jankowski, N. Lindahl, J. Weidow, W. Wieczorek and P. Johansson, ''Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments,'' ACS (American Chemical Society) Applied energy materials, vol. 1, no. 6, pp. 2582-2591, 2018. https://doi.org/10.1021/acsaem.8b00295
  28. H. Yildirim, J. B. Haskins, C. W. Bauschlicher and J. W. Lawson, ''Decomposition of Ionic Liquids at Lithium Interfaces. 1. Ab Initio Molecular Dynamics Simulations,'' The Journal of Physical Chemistry C, vol. 121, no. 51, pp. 28214-28234, 2017. https://doi.org/10.1021/acs.jpcc.7b09657
  29. A. J. Louli, L. D. Ellis and J. R. Dahn, ''Operando Pressure Measurements Reveal Solid Electrolyte Interphase Growth to Rank Li-Ion Cell Performance,'' Joule, vol. 3, no.3, pp. 745-761, 2019. https://doi.org/10.1016/j.joule.2018.12.009
  30. J. Nordstrom, L. Aguilera and A. Matic, ''Effect of Lithium Salt on the Stability of Dispersions of Fumed Silica in the Ionic Liquid BMImBF4,'' Langmuir, vol. 28, no. 9, pp. 4080-4085, 2012. https://doi.org/10.1021/la204555g
  31. B. Commarieu, A. Paolella, J.-C. Daigle and K. Zaghib, ''Toward high lithium conduction in solid polymer and polymer-ceramic batteries,'' Current Opinion in Electrochemistry, vol. 9, no. 1, pp. 56-63, 2018. https://doi.org/10.1016/j.coelec.2018.03.033
  32. F. Sagane, T. Abe and Z. Ogumi, ''Electrochemical Analysis of Lithium-Ion Transfer Reaction through the Interface between Ceramic Electrolyte and Ionic Liquids,'' Journal of The Electrochemical Society, vol. 159, no. 11, pp. 1766-1770, 2012.