References
- K. Xu, ''Electrolytes and Interphases in Li-Ion Batteries and Beyond" Chemical Reviews, vol. 114, no. 23, pp.11503-11618, 2014. https://doi.org/10.1021/cr500003w
- Z. Yu, D. G. Mackanic, Y. Cui and Z. Bao, ''A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes,'' Joule, vol. 3, no. 11, pp. 2761-2776, 2019. https://doi.org/10.1016/j.joule.2019.07.025
- X. Xu, Z. Wen, X. Wu, X. Yang and Z. Gu, ''Lithium Ion-Conducting Glass-Ceramics of Li1.5Al0.5Ge1.5 (PO4)3-xLi2O (x=0.0-0.20) with Good Electrical and Electrochemical Properties,'' Journal of the American Ceramic Society, vol. 90, no. 9, pp. 2802-2806, 2007. https://doi.org/10.1111/j.1551-2916.2007.01827.x
- D. Lin, Y. Liu, Z. Liang, J. Xie and Y. Cui, ''Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes,'' Nature Nanotechnology, vol.11, pp. 626-632, 2016. https://doi.org/10.1038/nnano.2016.32
- A. Manthiram, X. Yu and S. Wang, ''Lithium battery chemistries enabled by solid-state electrolytes,'' Nature Reviews Materials, vol. 2, no. 16103, pp. 1-16, 2017.
- P. G. Bruce and A. R. West, ''The A-C Conductivity of Polycrystalline LISICON, Li2 + 2x Zn1 - x GeO4, and a Model for Intergranular Constriction Resistances patterns,'' Journal of The Electrochemical Society, vol. 130, no. 3, pp. 662-663, 1983. https://doi.org/10.1149/1.2119778
- A. Emly, E. Kioupakis and A. Van der Ven, "Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors," Chemistry of Materials, vol. 25, no. 23, pp. 4663-4670, 2013. https://doi.org/10.1021/cm4016222
- X. Han, Y. Gong, K. K. Fu, E. D. Wachsman and L. Hu, ''Negating interfacial impedance in garnet-based solid-state Li metal batteries,'' Nature Materials, vol. 16, pp. 572-579, 2017. https://doi.org/10.1038/nmat4821
- F. Mizuno, A. Hayashi, K. Tadanaga and M. Tatsumisago, ''A large area flexible array sensors using screen printing technology,'' Advanced Materials, vol. 17, no. 7, pp. 918-921, 2005. https://doi.org/10.1002/adma.200401286
- M. Matsuo, Y. Nakamori, S.-i. Orimo, H. Maekawa and H. Takamura, ''Lithium superionic conduction in lithium borohydride accompanied by structural transition,'' Applied Physics Letters, vol. 91, no. 22, pp. 224103- 224106, 2007. https://doi.org/10.1063/1.2817934
- W. Liu, S. W. Lee, D. Lin, A. D. Sendek and Y. Cui, ''Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires,'' Nature Energy, vol. 2, no. 17035, pp. 1-7, 2017.
- J. S. Thokchom and B. Kumar, ''Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic,'' Journal of Power Sources, vol. 185, no. 1, pp. 480-485, 2008. https://doi.org/10.1016/j.jpowsour.2008.07.009
- M. Guin, S. Indris, M. Kaus, H. Ehrenberg and O. Guillon, ''Stability of NASICON materials against water and CO2 uptake'' Solid State Ionics, vol. 302, no. 1, pp. 102-106, 2017. https://doi.org/10.1016/j.ssi.2016.11.006
- J. H. Lee, "A Study of Dynamic Properties of Graphene-Nanoribbon Memory", Journal of Semiconductor & Display Technology, v.13, no.2, pp.53-56, 2014.
- S. Jung, Y. S. Kim, K. H., "Effect of Post-annealing Treatment on Copper Oxide based Heterojunction Solar Cells", Journal of Semiconductor & Display Technology, v.19, pp.55-59, 2020.
- Choi, J. Roh, S,Seo, Hwa-Il., "A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell", Journal of Semiconductor & Display Technology, v.18, pp.12-17, 2019.
- Z. Sun, L. Liu, Y. Lu, J. Zhao and H. An, ''Preparation and ionic conduction of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte using inorganic germanium as precursor,'' Journal of the European Ceramic Society, vol. 39, no. 2, pp. 402-408, 2019. https://doi.org/10.1016/j.jeurceramsoc.2018.09.025
- P. Hartmann, T. Leichtweiss, M. R. Busche, P. Adelhelm and J. Janek, ''Degradation of NASICON-Type Materials in Contact with Lithium Metal: Formation of Mixed Conducting Interphases (MCI) on Solid Electrolytes,'' The Journal of Physical Chemistry C, vol. 117, no. 41, pp. 21064-21074, 2013. https://doi.org/10.1021/jp4051275
- J. A. Lewis, F. J. Q. Cortes, M. G. Boebinger, M. Chi and M. T. McDowell, ''Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure'' ACS (American Chemical Society) Energy Letter, vol. 4, no. 2, pp. 591-599, 2019.
- Y. Liu, C. Li, B. Li, H. Song and P. He et al., ''Germanium Thin Film Protected Lithium Aluminum Germanium Phosphate for Solid-State Li Batteries," Advanced Energy Materials, vol. 8, no. 16, pp. 1702374-1702379, 2018. https://doi.org/10.1002/aenm.201702374
- Z. Zhang, S. Chen, J. Yang, P. Cui and X. Xu, ''Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode,'' Electrochimica Acta, vol. 297, no. 1, pp. 281-287, 2019. https://doi.org/10.1016/j.electacta.2018.11.206
- S. K. Singh, H. Gupta, Y. L. Verma and R. K. Singh, ''Improved electrochemical performance of EMIMFSI ionic liquid based gel polymer electrolyte with temperature for rechargeable lithium battery,'' Energy, vol. 150, no. 1, pp. 890-900, 2018. https://doi.org/10.1016/j.energy.2018.03.024
- D. R. MacFarlane, M. Forsyth, P. C. Howlett, S. Zhang and J. Zhang, ''Ionic liquids and their solid-state analogues as materials for energy generation and storage,'' Nature Reviews Materials, vol. 1, no. 15005, pp. 1-10, 2016.
- I. A. Shkrob, T. W. Marin, Y. Zhu and D. P. Abraham, ''Why Bis(fluorosulfonyl)imide Is a Magic Anion for Electrochemistry'' The Journal of Physical Chemistry C, vol. 118, no. 34, pp. 19661-19671, 2014. https://doi.org/10.1021/jp506567p
- S. Xiong, K. Xie, E. Blomberg, P. Jacobsson and A. Matic, ''Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries,'' Journal of Power Sources, vol. 252, no. 1, pp. 150-155, 2014. https://doi.org/10.1016/j.jpowsour.2013.11.119
- Y. Lu, Z. Tu and L. A. Archer, ''Stable lithium electrodeposition in liquid and nanoporous solid electrolytes,'' Nature Materials, vol. 13, no. 1, pp. 961-969, 2014. https://doi.org/10.1038/nmat4041
- P. Jankowski, N. Lindahl, J. Weidow, W. Wieczorek and P. Johansson, ''Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments,'' ACS (American Chemical Society) Applied energy materials, vol. 1, no. 6, pp. 2582-2591, 2018. https://doi.org/10.1021/acsaem.8b00295
- H. Yildirim, J. B. Haskins, C. W. Bauschlicher and J. W. Lawson, ''Decomposition of Ionic Liquids at Lithium Interfaces. 1. Ab Initio Molecular Dynamics Simulations,'' The Journal of Physical Chemistry C, vol. 121, no. 51, pp. 28214-28234, 2017. https://doi.org/10.1021/acs.jpcc.7b09657
- A. J. Louli, L. D. Ellis and J. R. Dahn, ''Operando Pressure Measurements Reveal Solid Electrolyte Interphase Growth to Rank Li-Ion Cell Performance,'' Joule, vol. 3, no.3, pp. 745-761, 2019. https://doi.org/10.1016/j.joule.2018.12.009
- J. Nordstrom, L. Aguilera and A. Matic, ''Effect of Lithium Salt on the Stability of Dispersions of Fumed Silica in the Ionic Liquid BMImBF4,'' Langmuir, vol. 28, no. 9, pp. 4080-4085, 2012. https://doi.org/10.1021/la204555g
- B. Commarieu, A. Paolella, J.-C. Daigle and K. Zaghib, ''Toward high lithium conduction in solid polymer and polymer-ceramic batteries,'' Current Opinion in Electrochemistry, vol. 9, no. 1, pp. 56-63, 2018. https://doi.org/10.1016/j.coelec.2018.03.033
- F. Sagane, T. Abe and Z. Ogumi, ''Electrochemical Analysis of Lithium-Ion Transfer Reaction through the Interface between Ceramic Electrolyte and Ionic Liquids,'' Journal of The Electrochemical Society, vol. 159, no. 11, pp. 1766-1770, 2012.