Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었습니다(과제번호: RS-2021-KA163775, "빅데이터와 인공지능 기반의 발파굴착터널 자동설계기술 개발을 위한 기초연구"). 이에 감사드립니다.
References
- Ahn, Y.H., Kim, S.Y. (2017), "Construction industry transition with the 4th industrial revolution technology", Journal of the Korea Institute of Building Construction, Vol. 17, No. 2 (special issue), pp. 19-23.
- Alipour, A., Mokhtarian-Asl, M., Asadizadeh, M. (2021), "Support vector machines for the estimation of specific charge in tunnel blasting", Periodica Polytechnica Civil Engineering, Vol. 65, No. 3, pp. 967-976.
- Choi, B.H., Ryu, C.H., Jeong, J.H. (2009), "Tunnel blasting design suited to given specific charge", Explosives and Blasting, Vol. 27, No. 2, pp. 33-41.
- Choi, Y.K. (2005), "Development of automated pattern generation method for tunnel blasting", Explosives and Blasting, Vol. 23, No. 4, pp. 19-29.
- Construction CALS Home page, https://www.calspia.go.kr/io/index.do (July 2, 2022).
- Hafner, M., Rajster, D., Zibert, M., Tusar, T., Zenko, B., Znidarsic, M., Fuart, F., Vladusic, D. (2019), "Artificial intelligence support for tunnel design in urban areas", Tunnels and Underground Cities: Engineering and Innovation meet Archaeology, Architecture and Art, Taylor & Francis, London, pp. 2196-2205.
- Jang, H., Topal, E. (2013), "Optimizing overbreak prediction based on geological parameters comparing multiple regression analysis and artificial neural network", Tunnelling and Underground Space Technology, Vol. 38, pp. 161-169. https://doi.org/10.1016/j.tust.2013.06.003
- Kim, Y. (2021), "An analysis of artificial intelligence algorithms applied to rock engineering", Tunnel and Underground Space, Vol. 31, No. 1, pp. 25-40. https://doi.org/10.7474/TUS.2021.31.1.025
- Kim, Y., Bruland, A. (2015), "Comparison of tunnel excavation cycle time for Norwegian and Korean tunnels", Proceedings of the 41th ITA World Tunnel Congress, Dubrovnik, Croatia.
- Langefors, U., Kihlstom, B. (1967), The Modern Technique of Rock Blasting, Wiley or Almqvist & Wiksell, New York, pp. 180-229.
- Lee, J.K., Choi, W.H., Kim, Y., Lee, S.S. (2021), "A study on the rock mass classification in boreholes for a tunnel design using machine learning algorithms", Journal of Korean Tunnelling and Underground Space Association, Vol. 23, No. 6, pp. 469-484. https://doi.org/10.9711/KTAJ.2021.23.6.469
- Lee, T.H. (2016), Development of an artificial neural network for optimization of tunnel blasting design, Doctoral Thesis, City University of Hong Kong, pp. 143-194.
- Mitchell, T.M. (1997), Machine Learning, McGraw Hill, pp. 1.
- MOLIT (2016), Korean design standard, KDS 27 20 00, Ministry of Land, Infrastructure and Transport, pp. 3-4.
- MOLIT Statistics System Home page, http://stat.molit.go.kr/portal/cate/statView.do?hRsId=302&hFormId=4746&hDivEng=&month_yn= (September 24, 2021b).
- MOLIT Statistics System Home page, http://stat.molit.go.kr/portal/cate/statView.do?hRsId=65&hFormId=1040&hDivEng=&month_yn= (September 24, 2021a).
- Olofsson, S. (1990), Applied Explosives Technology for Construction and Mining, Applex, Arla, pp. 131-173.
- Soranzo, E., Guardiani, C., Wu, W. (2022), "The application of reinforcement learning to NATM tunnel design", Underground Space, In Press, pp. 1-13.
- Trivedi, R., Singh, T.N., Mudgal, K., Gupta, N. (2014), "Application of artificial neural network for blast performance evaluation", International Journal of Research in Engineering and Technology, Vol. 03, No. 5, pp. 564-574.
- Wu, Z., Luo, D., Chen, G. (2020), "Design and realization of the intelligent design system for tunnel blasting in mine based on database", Geofluids, Vol. 2020, Article ID 8878783, pp. 1-11.