DOI QR코드

DOI QR Code

Antibiotic Resistance of Pectobacterium Korean Strains Susceptible to the Bacteriophage phiPccP-1

  • Vu, Nguyen Trung (Graduate School of Green-Bio Science, Kyung Hee University) ;
  • Roh, Eunjung (Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Thi, Thuong Nguyen (Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University) ;
  • Oh, Chang Sik (Graduate School of Green-Bio Science, Kyung Hee University)
  • Received : 2022.07.01
  • Accepted : 2022.09.04
  • Published : 2022.09.30

Abstract

Commercial products with antibiotics like streptomycin as active ingredients have been used to control soft rot disease caused by Pectobacterium species for a long time. In this study, antibiotic resistance of twenty-seven Korean strains of Pectobacterium species including P. carotovorum, P. odoriferum, P. brasiliense, and P. parmenteri, which were previously shown to be susceptible to the bacteriophage phiPccP-1 was surveyed using a disk diffusion assay. While all strains were highly susceptible to ampicillin, kanamycin, chloramphenicol, tetracycline, and rifampicin, some strains showed weak susceptibility to 300 ㎍/ml of streptomycin. Furthermore, some of them are partially or completely resistant to commercial pesticides-Buramycinand streptomycin at the concentration of 250 ㎍/ml that is recommended by the manufacturer for streptomycin-based pesticides. These results indicate the presence of streptomycin-resistant Pectobacterium strains in South Korea, and the development of antibiotic alternatives to control soft rot is needed.

Keywords

Acknowledgement

This work was carried out with the support of the "Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ014219022022)" of the Rural Development Administration, Republic of Korea.

References

  1. Abd-El-Khair, H. and Karima, H. E. H. 2007. Application of some bactericides and bioagents for controlling the soft rot disease in potato. Res. J. Agric. Biol. Sci. 3: 463-473.
  2. Bhat, K. A., Viswanath, H. S., Bhat, N. A. and Wani, T. A. 2017. Bioactivity of various ethanolic plant extracts against Pectobacterium carotovorum subsp. carotovorum causing soft rot of potato tubers. Indian Phytopathol. 70: 463-470.
  3. Burr, T. J., Norelli, J. L., Katz, B., Wilcox, W. F. and Hoying, S. A. 1988. Streptomycin resistance of Pseudomonas syringae pv. papulans in apple orchards and its association with a conjugative plasmid. Phytopathology 78: 410-413. https://doi.org/10.1094/Phyto-78-410
  4. Cooksey, R. C., Morlock, G. P., McQueen, A., Glickman, S. E. and Crawford, J. T. 1996. Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob. Agents Chemother. 40: 1186-1188. https://doi.org/10.1128/AAC.40.5.1186
  5. Coyier, D. L. and Covey, R. P. 1975. Tolerance of Erwinia amylovora to streptomycin sulfate in Oregon and Washington [Pears, bacterial diseases]. Plant Dis. Rep. 59: 849-852.
  6. Czajkowski, R., Perombelon, M. C. M., van Veen, J. A. and van der Wolf, J. M. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol. 60: 999-1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x
  7. Dees, M. W., Lysoe, E., Rossmann, S., Perminow, J. and Brurberg, M. B. 2017. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 67: 5222-5229. https://doi.org/10.1099/ijsem.0.002448
  8. Glasner, J. D., Marquez-Villavicencio, M., Kim, H.-S., Jahn, C. E., Ma, B., Biehl, B. S. et al. 2008. Niche-specificity and the variable fraction of the Pectobacterium pan-genome. Mol. Plant-Microbe Interact. 21: 1549-1560. https://doi.org/10.1094/MPMI-21-12-1549
  9. Gokul, G. G., Louis, V., Namitha, P. M., Mathew, D., Girija, D., Shylaja, M. R. et al. 2019. Variability of Pectobacterium carotovorum causing rhizome rot in banana. Biocatal. Agric. Biotechnol. 17: 60-81. https://doi.org/10.1016/j.bcab.2018.11.001
  10. Han, H. S., Nam, H. Y., Koh, Y. J., Hur, J.-S. and Jung, J. S. 2003. Molecular bases of high-level streptomycin resistance in Pseudomonas marginalis and Pseudomonas syringae pv. actinidiae. J. Microbiol. 41: 16-21.
  11. Jee, S., Choi, J.-G., Lee, Y.-G., Kwon, M., Hwang, I. and Heu, S. 2020. Distribution of Pectobacterium species isolated in South Korea and comparison of temperature effects on pathogenicity. Plant Pathol. J. 36: 346-354. https://doi.org/10.5423/PPJ.OA.09.2019.0235
  12. Jones, A. L., Norelli, J. L. and Ehret, G. R. 1991. Detection of streptomycin-resistant Pseudomonas syringae pv. papulans in Michigan apple orchards. Plant Dis. 75: 529-531. https://doi.org/10.1094/PD-75-0529
  13. Kang, Y, G., Park, E. K., and Chu, H. G. 1989. Overwintering of tobacco hollow stalk disease pathogen Erwinia carotovora subsp. carotovora in field soils. J. Korean Soc. Tobacco Sci. 11: 41-48. (In Korean)
  14. Kobayashi, K., Haruta, K. and Yoshida, M. 1987. Streptomycin resistance of Erwinia carotovora subsp. carotovora isolated from reclaimed Japanese radish fields and natural grassland. Kyushu Plant Prot. Res. 33: 53-56. https://doi.org/10.4241/kyubyochu.33.53
  15. Lee, S., Vu, N.-T., Oh, E.-J., Rahimi-Midani, A., Thi, T.-N., Song, Y.-R. et al. 2021. Biocontrol of soft rot caused by Pectobacterium odoriferum with bacteriophage phiPccP-1 in kimchi cabbage. Microorganisms 9: 779. https://doi.org/10.3390/microorganisms9040779
  16. Lee, Y. S., Kim, G. H., Song, Y.-R., Oh, C.-S., Koh, Y. J. and Jung, J. S. 2020. Streptomycin resistant isolates of Pseudomonas syringae pv. actinidiae in Korea. Res. Plant Dis. 26: 44-47. (In Korean) https://doi.org/10.5423/RPD.2020.26.1.44
  17. Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J. et al. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97: 1150-1163. https://doi.org/10.1094/PHYTO-97-9-1150
  18. McManus, P. S., Stockwell, V. O., Sundin, G. W. and Jones, A. L. 2002. Antibiotic use in plant agriculture. Annu. Rev. Phytopathol. 40: 443-465. https://doi.org/10.1146/annurev.phyto.40.120301.093927
  19. Miller, T. D. and Schroth, M. N. 1972. Monitoring the epiphytic population of Erwinia amylovora on pear with a selective medium. Phytopathology 62: 1175-1182. https://doi.org/10.1094/Phyto-62-1175
  20. Minsavage, G. V., Canteros, B. I. and Stall, R. E. 1990. Plasmid-mediated resistance to streptomycin in Xanthomonas campestris pv. vesicatoria. Phytopathology 80: 719-723. https://doi.org/10.1094/Phyto-80-719
  21. Nguyen, H. T., Yu, N. H., Park, A. R., Park, H. W., Kim, I. S. and Kim, J.-C. 2017. Antibacterial activity of pharbitin, isolated from the seeds of Pharbitis nil, against various plant pathogenic bacteria. J. Microbiol. Biotechnol. 27: 1763-1772. https://doi.org/10.4014/jmb.1706.06008
  22. Russo, N. L., Burr, T. J., Breth, D. I. and Aldwinckle, H. S. 2008. Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant Dis. 92: 714-718. https://doi.org/10.1094/PDIS-92-5-0714
  23. Sang, M. K., Dutta, S. and Park, K. 2015. Influence of commercial antibiotics on biocontrol of soft rot and plant growth promotion in Chinese cabbages by Bacillus vallismortis EXTN-1 and BS07M. Res. Plant Dis. 21: 255-260. https://doi.org/10.5423/RPD.2015.21.4.255
  24. Shrestha, A., Kim, E. C., Lim, C. K., Cho, S., Hur, J. H. and Park, D. H. 2009. Biological control of soft rot on Chinese cabbage using beneficial bacterial agents in greenhouse and field. Korean J. Pestic. Sci. 13: 325-331.
  25. Sundin, G. W. and Bender, C. L. 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59: 1018-1024. https://doi.org/10.1128/aem.59.4.1018-1024.1993
  26. Xu, Y., Zhu, X.-F., Zhou, M.-G., Kuang, J., Zhang, Y., Shang, Y. et al. 2010. Status of streptomycin resistance development in Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola in China and their resistance characters. J. Phytopathol. 158: 601-608.
  27. Yongsheng, H., Xiaojun, L., Shijin, Z., Yongsheng, M. and Li, W. 2014. Field efficiency trial of 72% streptomycin against Konjac bacterial soft rot. Plant Dis. Pests 5: 29.
  28. Young, J. M. 1977. Resistance to streptomycin in Pseudomonas syringae from apricot. N. Z. J. Agric. Res. 20: 249-251. https://doi.org/10.1080/00288233.1977.10427329