DOI QR코드

DOI QR Code

Structural Dynamic Characteristics of Modular Deployable Reflectors and Booms for the Large Mesh Antennas

대형 메쉬 안테나 개발을 위한 모듈식 반사판 및 붐 구조의 동적 특성 분석

  • Received : 2022.05.18
  • Accepted : 2022.07.17
  • Published : 2022.10.01

Abstract

Large aperture antennas with long focal lengths in space have important application for telecommunications, Earth observation and science missions. This paper aims to understand the dynamics of deployment of large mesh antennas and to provide a multibody model for determining the driving forces for the design of reflectors and booms. The modular deployable reflector and boom are designed based on the deployment unit cell. A multibody dynamic model is formulated with Kane's equation and simulated using the pseudo upper triangular decomposition (PUTD) method for solving the constrained problem. Based on the multibody dynamic model, the kinetics of the deployment, the motor driving forces, and the structural dynamic deformation are investigated.

본 논문에서는 대형 메쉬 안테나 개발을 위한 모듈식 전개형 반사판 및 붐 구조의 전개 시 요구되는 구동력 및 전개 특성을 분석하고자 한다. 단위 전개 구조를 이용하여 모듈식 전개형 반사판 링과 붐 구조의 수납/전개된 형상을 분석하였다. Kane's 방정식을 이용하여 전개 구조물의 다물체 동역학 방정식을 유도하고 PUTD(Pseudo Upper Triangular Decomposition) 방법을 적용하여 구속조건 문제를 해결하였다. 다물체 동역학 시뮬레이션을 통해 설계된 모듈식 전개 반사판 링 그리고 붐 구조의 동적 특성을 살펴보고자 한다.

Keywords

Acknowledgement

이 연구는 LIG NEX1 산학협력과제 지원으로 연구되었음

References

  1. Magenot, C. J., Saniago-Prowald, J. and Klooster, K., "Large Reflector Antenna Working Group Final Report," ESA Technical Note, TEC-EEA, 2010.
  2. Miura, K. and Miyazaki. Y., "Concept of the Tension Truss Antenna," AIAA Journal, Vol. 28, No. 6, 1990, pp. 1098~1104. https://doi.org/10.2514/3.25172
  3. Datashvili, L., "Review and Evaluation of the Existing Designs/Technologies for Space Large Deployable Apertures," International Scientific Conference on Advanced Lightweight Structures and Reflector Antennas, Tbilisi, Georgia, 2009.
  4. Robederer, A., Historical Overview of the Development of Space Antennas, Space Antenna Handbook, Wiley, New York, 2012, pp. 250~307.
  5. Thomson, M. W., "AstroMesh Deployable Reflectors for Ku and Ka-band Commercial Satellites," 20th AIAA International Communication Satellite Systems Conference and Exhibit, 2002, AIAA 2002-2032.
  6. Astro Aerospace, "AstroMeshTM Deployable Reflector Data Sheet," Northrop Grumman Space Technology, 2004, DS-409.
  7. Fanning, P. and Hollaway, L., "The Deployment Analysis of a Large Space Antenna," International Journal of Space Structures, Vol. 8, No. 3, 1993.
  8. Peng, Y., Zhao, Z., Zhou, M. and He, J., "Flexible Multibody Model and the Dynamics of the Deployment of Mesh Antennas," Journal of Guidance, Control, and Dynamics, Vol. 40, No. 6, 2017, pp. 1499~1506. https://doi.org/10.2514/1.G000361
  9. Amirouch, F., Fundamentals of Multibody Dynamics: Theory and Applications, Birkhauser, 2004.
  10. Kane, T. R., and Levinson, D. A., Dynamics: Theory and Applications, McGraw-Hill, New York, 1985
  11. Amirouch, F. and Jia, T., "Automatic Elimination of the Undetermined Multipliers in Kane's Equations Using a Pseudo Upper Triangular Decomposition (PUTD) Method," Computer and Structures, Vol. 27, No. 2, 1987, pp. 203~210. https://doi.org/10.1016/0045-7949(87)90088-5
  12. Walton, W. C. and Steeves, E. C., "A New Matrix Theorem and Its Applications for Establishing Independent Coordinates for Complex Dynamical Systems with Constraints," NASA Technical Report, NASA TR R-326, 1969.
  13. Jennings, A., "Frame Analysis Including of Change of Geometry," Journal of the Structural Division, Vol. 94, No. ST3, Paper 5839, 1968.
  14. Bathe, K.-J., Finite Element Procedure in Engineering Analysis, Prentice-Hall, 1983.
  15. Datashvili, L., Maghaldadze, N. and Friemel, M., "European Large Deployable Mesh Antenna Reflector Approaching Qualification Phase," International Scientific Conference on Advanced Lightweight Structures and Reflector Antennas, Tbilisi, Georgia, 2018.