DOI QR코드

DOI QR Code

무반사 코팅된 DFB 레이저 다이오드에서 발진 모드와 격자 위상

Oscillation Mode and Grating Phase in DFB Laser Diode with an Anti-reflection Coated Mirror

  • 권기영 (공주대학교 전기전자제어공학부) ;
  • 기장근 (공주대학교 전기전자제어공학부)
  • 투고 : 2022.07.05
  • 심사 : 2022.08.31
  • 발행 : 2022.09.30

초록

본 연구에서는 1.55um의 파장을 갖는 DFB 레이저 다이오드에서 이득 격자와 굴절률 격자가 동시에 존재할 때, 오른쪽 거울면에 무반사 코팅을 하여 ρr=0 이 되도록 하였다. δL<0인 경우일 때, 발진 모드에 대하여, 발진 주파수와 발진 이득의 특성을 해석했다. 좌측 거울면 상에서 격자의 위상이 π에서부터 π/2씩 연속적으로 감소할 때마다, 각 발진 모드의 (αL, δL) 그래프 선들이 좌측으로 δL 값이 약 0.6 정도씩 낮아지고 있음을 볼 수 있다. 문턱이득이 가장 낮은 발진 모드의 경우는 κL=10인 경우이고, 이때 모드 선별성은 다른 κL 값의 경우와 비교할 때 상대적으로 낮다. 모드 선별성이 우수한 경우는 κL=0.1 에서부터 κL=6 정도까지이고, 모드 선별성이 우수할수록 주파수 안정성이 우수하다. 두 개의 벽개면을 갖는 경우와 비교하면, 무반사 코팅을 한 DFB 레이저 다이오드는, 발진 모드의 문턱 이득은 약 2배 정도로 높아지지만 모드 선별성 측면은 2배 정도 더 우수해 진다.

In this paper, when a gain grating and a refractive index grating exist simultaneously in a DFB laser diode having a wavelength of 1.55 ㎛, an anti-reflection coating is applied to the right mirror surface so that ρr=0. In case of δL<0, the characteristics of the oscillation frequency and oscillation gain have been analyzed. Whenever the phase of the grating on the left side of the mirror continuously decreases by π/2, the δL value of each oscillation mode decreases by about 0.6 to the left of the graph lines of each oscillation mode. The case of the oscillation mode having the lowest threshold gain is the case of κL=10, and in this case, the mode selectivity is relatively low compared to the case of other values of κL. From κL=0.1 to κL=6, the mode selectivity and the frequency stability are excellent. As the mode selectivity is excellent, the frequency stability is excellent. Compared to the case with two cleaved mirrors, the DFB laser diode with anti-reflection coating increases the threshold gain of the oscillation mode by about 2 times, but the mode selectivity becomes about 2 times better.

키워드

참고문헌

  1. Seokyoung Kim, Kwangki Ryoo, "Research on information & communication work business in response to the fourth industrial revolution", The Journal of the Convergence on Culture Technology, vol. 5, no. 1, pp.139-146, 2019. http://dx.doi.org/10.17703/JCCT.2019.5.1.139
  2. T.L. Koch, U. Koren, "Semiconductor lasers for coherent optical fiber communications", Journal of Lightwave Technology, vol. 8, no. 3, pp. 274-293, 1990. DOI: 10.1109/50.50725
  3. Jing-Yi Wang, M. Cada, Jin Sun, "Theory for optimum design and analysis of distributed-feedback lasers", IEEE Photonics Technology Letters, vol. 11, issue 1, pp. 24-26, 1999. DOI: 10.1109/68.736378
  4. S.K.B. Lo, H. Ghafouri-Shiraz, "A method to determine the above-threshold stability of distributed feedback semiconductor laser diodes", Lightwave Technology Journal of, vol. 13, no. 4, pp. 563-568, 1995. DOI: 10.1109/50.372466
  5. H. Olesen, J. Salzman, B. Jonsson, B. Tromborg, "Single-mode stability of DFB lasers with longitudinal Bragg detuning", IEEE Photonics Technology Letters, vol. 7, issue 5, pp. 461-463, 1995. DOI: 10.1109/68.384510
  6. C.A. Ferreira Fernandes, "Stability in single longitudinal mode operation in DFB laser structures", Electrotechnical Conference 2004. MELECON 2004. Proceedings of the 12th IEEE Mediterranean, vol. 1, pp. 3-6 Vol.1, 2004. DOI: 10.1109/MELCON.2004.1346756
  7. M. Okai, S. Tsuji, N. Chinone, "Stability of the longitudinal mode in lambda/4-shifted InGaAsP/InP DFB lasers, IEEE Journal of Quantum Electronics, vol. 25, issue 6, pp. 1314-1319, 1989. DOI: 10.1109/3.29262
  8. G. Morthier, R. Baets, "Design of index-coupled DEB lasers with reduced longitudinal spatial hole burning", Lightwave Technology Journal of, vol. 9, no. 10, pp. 1305-1313, 1991. DOI: 10.1109/50.90928
  9. T. Yamanaka, S. Seki, K. Yokoyama, "Numerical analysis of static wavelength shift for DFB lasers with longitudinal mode spatial hole burning", IEEE Photonics Technology Letters, vol. 3, issue 7, pp. 610-612, 1991, DOI: 10.1109/68.87929
  10. Keeyoung Kwon, Janggeun Ki, "Simulation and Examination for Beam Profile of DFB Laser", The Journal of Korea Software Assessment and Valuation Society, vol. 15, no. 1, pp. 71-78, 2019, http://dx.doi.org/10.29056/jsav.2019.06.08
  11. Changseok Lee, Keeyoung Kwon, Janggeun Ki, Hyunmook Choi, "Analysis of Gain and Frequency in a DFB laser with Cleaved Facets", The Journal of Korea Software Assessment and Valuation Society, vol. 16, no. 2, pp. 117-125, 2020, http://dx.doi.org/10.29056/jsav.2020.12.13