DOI QR코드

DOI QR Code

Improvement and Observation of Condensation Particle Counter in Atmospheric Research Aircraft NARA for Condensation Particle Research in Korea

한반도 상공의 응결핵 연구를 위한 기상항공기 나라호의 응결핵입자계수기 개선 및 관측

  • Jung, Woonseon (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Ku, Jung Mo (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Kim, Min-Seong (Observation Research Department, National Institute of Meteorological Sciences) ;
  • Shin, Hye-min (Atmospheric Research Aircraft Operation Department, Sunnyair) ;
  • Ko, A-Reum (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Chang, Ki-Ho (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Cha, Joo Wan (Research Applications Department, National Institute of Meteorological Sciences) ;
  • Lee, Yong Hee (Research Applications Department, National Institute of Meteorological Sciences)
  • 정운선 (국립기상과학원 기상응용연구부) ;
  • 구정모 (국립기상과학원 기상응용연구부) ;
  • 김민성 (국립기상과학원 관측연구부) ;
  • 신혜민 (써니항공 기상항공기사업본부) ;
  • 고아름 (국립기상과학원 기상응용연구부) ;
  • 장기호 (국립기상과학원 기상응용연구부) ;
  • 차주완 (국립기상과학원 기상응용연구부) ;
  • 이용희 (국립기상과학원 기상응용연구부)
  • Received : 2022.07.21
  • Accepted : 2022.08.21
  • Published : 2022.09.30

Abstract

In this study, we improved the water-based condensation particle counter in Atmospheric Research Aircraft NARA and investigated the condensation particle number concentration over the Korean peninsula. Pump and set point information were changed to improve the instrument used by aircraft for observation. Ground-based observational result showed that the error between two instruments, which are water-based condensation particle counter and butanol-based condensation particle counter, was 4.7%. Aerial observational result revealed that the number concentration before improvement indicate large variation with unstable condition, whereas the number concentration after improvement indicate a reasonable variation. After improvement, the number concentration was 706±499 particle/cm3 in the West Sea and 257±80 particle/cm3 in Gangwon-do, and these are similar to the concentration range reported in previous studies. Notably, this is the first attempt to use aerial observation with water-based condensation particle counter to investigate condensation particle number concentration.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「기상조절 및 구름물리 연구」(KMA2018-00224) 의 지원으로 수행되었습니다.

References

  1. Cha, J. W., Jung, W., Chae, S., Ko, A. R., Ro, Y., Chang, K. H., Seo, S., Ha, J. C., Park, D., Hwang, H. J., Kim, M. H., Kim, K. E., Ku, J. M., 2019, Analysis of results and technics about precipitation enhancement by aircraft seeding in Korea, Atmos., 29, 481-499.
  2. Intergovernmental Panel on Climate Change (IPCC), 2015, Climate change 2014: Synthesis report, Cambridge university press, IPCC, Cambridge, 1-151.
  3. Jung, E., Seo, S., Chang, K. H., Yum, S. S., Heo, B. H., 2021a, Aerosol properties within and above the planetary boundary layer across the Korean peninsula during December 2016, Atmos., 12, 1-14.
  4. Jung, S. P., Lee, C. K., Kim, J. H., Yang, H. J., Yun, J. H., Ko, H. J., Hong, S. E., Kim, S. B., 2018, Thermodynamic characteristics of snowfall clouds using dropsonde data during ICE-POP 2018, Atmos., 30, 31-46.
  5. Jung, W., Cha, J. W., Ko, A. R., Chae, S., Ro, Y., Hwang, H. J., Kim, B. Y., Ku, J. M., Chang, K. H., Lee, C., 2022a, Progressive and prospective technology for cloud seeding experiment by unmanned aerial vehicle and atmospheric research aircraft in Korea, Adv. Meteorol., 2022, 3128657, 1-14.
  6. Jung, W., Chang, K. H., Ko, A. R., Ku, J. M., Ro, Y., Chae, S., Cha, J. W., Lee, C., 2021b, Meteorological conditions for the cloud seeding experiment by aircraft in Korea, J. Environ. Sci. Int., 30, 1027-1039. https://doi.org/10.5322/JESI.2021.30.12.1027
  7. Jung, W., Chang, K. H., Cha, J. W., Ku, J. M., Lee, C., 2022b, Estimation of available days for a cloud seeding experiment in Korea, J. Environ. Sci. Int., 31, 117-129. https://doi.org/10.5322/JESI.2022.31.2.117
  8. Kim, B. Y., Cha, J. W., Ko, A. R., Jung, W. S., Ha, J. C., 2020, Analysis of the occurrence frequency of seedable clouds on the Korean peninsula for precipitation enhancement experiments, Remote Sens., 12, 1-15.
  9. Kim, J. H., Park, M. S., Shim, S., Yum, S. S., 2012, On the contrast of aerosol size distribution and cloud condensation nuclei concentrations between the east and the west of the Korean peninsula, Atmos., 22, 87-96. https://doi.org/10.14191/Atmos.2012.22.1.087
  10. Kim, J. H., Yum, S. S., Shim, S., Kim, W. J., Park, M., Kim, J. H., Kim, M. H., Yoon, S. C., 2014, On the submicron aerosol distributions and CCN number concentration sin and around the Korean peninsula, Atmos. Chem. Phys., 14, 8763-8779. https://doi.org/10.5194/acp-14-8763-2014
  11. Kim, M. S., Goo, T. Y., Kim, J. H., Jung, S. P., Kim, B. Y., Kwon, B. H., Lee, K. J., Kang, M. H., Yang, J. W., Lee, C. K., 2022, Characteristics and quality control of precipitable water vapor measured by G-band (183 GHz) water vapor radiometer, J. Korean Earth Sci. Soc., 43, 239-252. https://doi.org/10.5467/JKESS.2022.43.2.239
  12. Ku, J. M, Ko, A. R., Chae, S., Hwang, H. J., Ro, Y., Jung, W., 2020, Analysis of cloud seeding experiment by aircraft: A case study of an international joint experiment in 2019., J. Korean Soc. Hazard Mitig., 20, 67-78.
  13. Li, S. L., Goo, T. Y., Moon, H. J., Labzovskii, L., Kenea, S. T., Oh, Y. S., Lee, H. Y., Byun, Y. H., 2019, Airborne in-situ measurement of CO2 and CH4 in Korea: Case study of vertical distribution measured at Anmyeon-do in winter, Atmos., 29, 511-523.
  14. Mei, F., Spielman, S., Hering, S., Wang, J., Pekour, M., Lewis, G., Schmid, B., Tomlinson, J., Havlicek, M., 2021, Simulation-aided characterization of a versatile water condensation particle counter for atmospheric airborne research, Atmos. Meas. Tech., 14, 7329-7340. https://doi.org/10.5194/amt-14-7329-2021
  15. NIMS, 2018, Development of application technology on atmospheric research aircraft, National institute of meteorological sciences, 1-122.
  16. NIMS, 2019, evelopment of application technology on atmospheric research aircraft, National institute of meteorological sciences, 1-126.
  17. NIMS, 2020, evelopment of application technology on atmospheric research aircraft, National institute of meteorological sciences, 1-139.
  18. NIMS, 2021, evelopment of application technology on atmospheric research aircraft, National institute of meteorological sciences, 1-122.
  19. Park, M., Yum, S. S., Kim, N., Cha, J. W., Ryoo, S. B., 2016, Characteristics of aerosol and cloud condensation nuclei concentrations measured over the yellow sea on a meteorological research vessel, Gisang 1, Atmos., 26, 243-256. https://doi.org/10.14191/Atmos.2016.26.2.243
  20. Pitter, R. L., Pruppacher, H. R., 1973, A Wind tunnel investigation of freezing of small water drops falling at terminal velocity in air, Q. J. R. Meteorol. Soc., 99, 540-550. https://doi.org/10.1002/qj.49709942111
  21. Yang, I. K., 1965, Basic investigation and preliminary field test for precipitation enhancement. Asia-Pac. J. Atmos. Sci., 1, 8-13.