DOI QR코드

DOI QR Code

연행침식을 고려한 토석류와 유목거동의 수치실험

Numerical Experiment of Debris Flow and Driftwood Behavior with Entrainment Erosion

  • Kang, Tae Un (Research Organization of Science and Technology, Ritsumeikan University) ;
  • Jang, Chang-Lae (Department of Civil Engineering, Korea National University of Transportation) ;
  • Kimura, Ichiro (Faculty of Sustainable Design, University of Toyama) ;
  • Lee, Nam Joo (Department of Civil Engineering, Kyungsung University)
  • 투고 : 2022.08.22
  • 심사 : 2022.09.16
  • 발행 : 2022.09.30

초록

본 연구는 유목과 연행침식을 고려한 토석류 수치모형을 개발하여 2011년 발생한 우면산 산사태의 관측데이터를 기반으로 수치모의를 수행하였다. 토석류 모형개발을 위해 천수방정식 기반의 침수모형인 Nays2DFlood 모형에 혼합유사농도의 이송확산, 토석류 지면전단응력, 연행침식 모듈을 추가하였으며 유목생성과 유목거동 모의를 위해 입자법 기반의 유목동력학 모형을 결합하였다. 모의결과, 우면산 산사태로 인한 수심과 유속 및 토석류 체적을 양호하게 재현한 것으로 나타났으며, 유목을 반영한 모의에서 보다 더 정확한 재현성을 나타냈다. 따라서 본 연구의 결과는 현재 기후변화로 인해 토석류 피해가 증가하는 실정에 대응할 수 있는 피해저감방안 구축에 도움이 될 수 있을 것으로 기대된다.

In this study, a numerical model of debris flow considering driftwood and entrainment erosion is developed. Subsequently, numerical simulations based on the observation data of the 2011 Mt. Umyeon are performed. To develop the debris flow model, the Nays2DFlood model, which is a flooding model based on the shallow water equation, is coupled with the transport diffusion of mixed sediment concentration, debris flow bottom shear stress, and entrainment erosion modules. The simulation closely reproduced the depth, flow velocity, and debris flow volume of Mt. Umyeon. In addition, the reproducibility of the simulation result with driftwood is more accurate than that without driftwood. The results of this study can facilitate in establishing measures to reduce debris disasters, thus alleviating the current increase in debris damage due to climate change.

키워드

과제정보

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다. (2020003050002)

참고문헌

  1. An, H., Kim, M., Lee, G., Kim, Y., and Lim, H. 2019. Estimation of the area of sediment deposition by debris flow using a physical-based modeling approach. Quaternary International 503(PA): 59-69. https://doi.org/10.1016/j.quaint.2018.09.049
  2. Choi, J. 2018. An analysis of debris-flow propagation characteristics and assessment of building hazard mapping using FLO-2D. Crisisonomy, Crisis and Emergency Management 14(2): 91-99. (in Korean) https://doi.org/10.14251/crisisonomy.2018.14.2.91
  3. International River Interface Cooperative (iRIC). 2022. Available Online: http://i-ric.org/en, 2022.
  4. Iverson, R.M. 2003. The debris-flow rheology myth, In debris flow hazards mitigation: mechanics, Prediction and Assessment (ed. Rickenmann & R. C. Chen), pp.303-314.
  5. Iverson, R.M., Ried, M.E., and LaHusen, R.G. 1997. Debris-flow mobilization from landslides. Annual Review of Earth and Planetary Sciences 25:85-138. https://doi.org/10.1146/annurev.earth.25.1.85
  6. Jeong, S. 2010. Flow characteristics of landslides/debris flows: sediment rheology and mobility and mobility of landslides. Proceedings of Korean Society of Engineering Geology (KSEG) Conference 2010 pp.79-80. (in Korean)
  7. Jeong, S. 2011. Rheological models for describing fineladen debris flows: grain-size effect. Journal of Korean Geotechnical Society 27(6): 49-61. (in Korean) https://doi.org/10.7843/kgs.2011.27.6.049
  8. Kang, H. and Kim, Y. 2015. Study on physical vulnerability curves of buildings by numerical simulation of debris flow. Journal of The Korean Society of Hazard Mitigation, KOSHAM 15(5): 155-167. (in Korean)
  9. Kang, T. and Kimura, I. 2018. Computational modeling for large wood dynamics with root wad and anisotropic bed friction in shallow flows. Advances in Water Resources 121: 419-431. https://doi.org/10.1016/j.advwatres.2018.09.006
  10. Kang, T., Jang, C., Lee, N., and Lee, W. 2021a. Numerical experiment of driftwood generation and deposition patterns by tsunami, Journal of Korean Society of Ecology and Resilient Infrastructure Engineering 8(4): 165-178. (in Korean)
  11. Kang, T., Kimura, I., and Onda, S. 2021b. Application of computational modeling for large wood dynamics with collisions on moveable channel beds. Advances in Water Resources 152:103912, doi.org/10.1016/j.advwatres.2021.103912.
  12. Kang, T., Kimura, I., and Shimizu, Y. 2020. Numerical simulation of large wood deposition patterns and responses of bed morphology in a braided river using large wood dynamics model. Earth Surface Processes and Landforms 45: 962-977, DOI: 10.1002/esp.4789.
  13. Kim, S., Paik, J., and Kim, K. 2013. Run-out modeling of debris flows in Mt. Umyeon using FLO-2D. Journal of the Korean Society of Civil Engineers 33(3): 965-974. (in Korean) https://doi.org/10.12652/KSCE.2013.33.3.965
  14. Kimura, I. and Kitanozo, K. 2020. Effects of the driftwood Richardson number and applicability of a 3D-2D model to heavy wood jamming around obstacles. Environmental Fluid Mechanics 20: 503-525. https://doi.org/10.1007/s10652-019-09709-6
  15. Korea Institute of Geoscience And Mineral Resources (KIGAM) (2006). Development of QRA system and damage mitigation technology of landslides. Research report, Office for Government Policy Coordination, TRKO200500002717, pp. 1-360. (in Korean)
  16. Lee, M. and Kim, Y. 2013. Movement and deposition characteristics of debris flow according to rheological factors. Journal of The Korean Society of Agricultural Engineers 29(5): 19-27. (in Korean)
  17. Lee, S., An, H., Kim, M., and Lim, H. 2020. Analysis of debris flow simulation parameters with entrainment effect: a case study in the Mt. Umyeon, J. Korea Water Resour. Assoc. 53(9): 637-646. (in Korean)
  18. Lim, J. and Kim, B. 2019. Modeling for debris flow behavior on expressway using FLO-2D. Journal of the Korean Society of Civil Engineers, KSCE 39(2): 263-272. (in Korean) https://doi.org/10.12652/KSCE.2019.39.2.0263
  19. Ministry of Land, Infrastructure and Transport. 2016. Korea building code. (in Korean).
  20. National Geographic Information Institute. 2022. Mt. Umyeon topographical map. Available online. Available Online: https://www.ngii.go.kr.
  21. O'Brien, J.S. and Julien, P.Y. 1985. Physical properties and mechanics of hyper-concentrated sediment flows. Proceedings of the Specialty Conference on Delineation of Landslide, Flash Flood and Debris Flow Hazard in Utah, Utah State University, Utah pp.260-279.
  22. Oh, C. and Jun, K. 2019. Terrain data construction and FLO-2D modeling of the debris-flow occurrences area. Journal of Korean Society of Disaster & Security, KSDS 12(4): 53-61. (in Korean)
  23. Rickenmann, D., Laigle, D., McArdell, B.W., and Hubl, J. 2006. Comparison of 2D debris-flow simulation models with field events. Computational Geosciences 10: 241-264. https://doi.org/10.1007/s10596-005-9021-3
  24. Seoul City. 2014. Research contract report: Addition and Complement causes survey of Mt, vol.2011 Woomyeon landslide. Research report 51-6110000-000649-01, pp. 1-46. (in Korean)
  25. Shimizu, Y., Takebayashi, H., Inoue, T., Hamaki, M., Iwasaki, T., and Nabi, M. 2014. Nays2DH solver manual. Available Online: http://i-ric.org/en.
  26. Shrestha, B., Nakagawa, H., Kawaike, K., Baba, Y., and Zhang, H. 2012. Driftwood deposition from debris flows at slit-check dams and fans. Nat Hazards 61: 577-602. https://doi.org/10.1007/s11069-011-9939-9
  27. Takahashi, T. 1991. Debris flow. Monograph series of IAHR, Balkema, pp. 1-165.
  28. The dong-a ilbo. 2022. Available Online: https://www.donga.com. (in Korean)
  29. United States Geological Survey (USGS). 2022. Shuttle Radar Topography Mission (SRTM). Available Online: https://earthexplorer.usgs.gov.