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SOME POLYNOMIALS WITH UNIMODULAR ROOTS

ARTURAS DUBICKAS

ABSTRACT. In this paper we consider a sequence of polynomials defined
by some recurrence relation. They include, for instance, Poupard poly-
nomials and Kreweras polynomials whose coefficients have some combi-
natorial interpretation and have been investigated before. Extending a
recent result of Chapoton and Han we show that each polynomial of this
sequence is a self-reciprocal polynomial with positive coefficients whose
all roots are unimodular. Moreover, we prove that their arguments are
uniformly distributed in the interval [0, 27).

1. Introduction
A polynomial
F(z)=an2" + -+ a12 + ag, an # 0,
of degree n is called self-reciprocal or palindromic if a; = a,_; for every i =
0,1,...,[n/2|. Equivalently, F(z) = 2™ F(1/z). For a self-reciprocal polyno-
mial F of degree n the polynomial (z"** + 1)F (1) — 222 F () has multiplicity
at least 2 at « = 1, since F'(1) = nF'(1)/2. Consequently, if F'(1) # 0, then
(z" ™ + 1)F(1) — 22%F(x)
(1) 5
(z—1)
is a polynomial of degree n+2 with leading coefficient F'(1). Inserting = — 1/x
into (1) and multiplying it by "2, we get the same polynomial in view of
F(z) = 2" F(1/x). Thus, the polynomial (1) is self-reciprocal.
Consider a sequence of polynomials defined by Fy(z) = 1, and
("2 + D)F,_1(1) — 222F, 1 (x)
2 F e
( ) n(x) ($ _»1)2
for n = 1,2,3,.... Recently, in [3] Chapoton and Han showed that for each
n > 1 the polynomial F;, is a self-reciprocal polynomial with positive integer

coefficients such that deg F,, = 2n, and all 2n roots of F), lie on the unit
circle. The coefficients of those polynomials appear in a paper of Poupard
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[17] and have some combinatorial interpretation: see the table [17, p. 370]
which corresponds to the coefficients of Fy(x) = 1, Fi(x) = 22 + 2z + 1,
Fy(z) = 4x* + 823 + 1022 4 8z + 4, etc. The consecutive coefficients of these
polynomials form the sequence A008301 in OEIS [20]. See also [6-8] for some
calculations with the numbers in the Poupard triangle and their generalizations.
In [3], the polynomials (2) are called Poupard polynomials.

The proof of unimodularity of the roots of Poupard polynomials in [3] is
based on a criterion of Lakatos and Losonczi [12]. See also [13] for a more
general result, [14] for a historical context, [15,18] for some other criteria for
unimodularity of roots of self-inversive polynomials, and, for example, [4,5,9,
10,16,19] for some other results concerning polynomials with unimodular roots.

By a similar argument based on [12], in [3] the unimodularity of roots of the
polynomials G,,, n = 0,1,2,..., of degree 2n + 1 defined by Go(z) = .+ 1 and

(2?3 + 1)G1(1) — 222G —1(2)
(x—1)?

for n = 1,2,3,... was established. Since G,, has a root at x = —1 for each
n > 0, by setting H,(x) = G,(x)/(x + 1) we get the sequence of polynomials
(Hp)S o, where Ho(z) =1 and

n=0>
_2H, (1) (2?3 1) /(@ + 1) — 222 H,, 1 (2)
B (x—1)2

for n =1,2,3,.... The coefficients of the polynomials 2!~ H,,(z) appear in a
paper of Kreweras [11] and have some combinatorial interpretation too. The
Kreweras triangle have been recently investigated in [1,2].

It is worth mentioning that (as observed in [3]) the constant terms of Poupard
polynomials and Kreweras polynomials are related to the reduced tangent num-
bers and so-called Genocchi numbers respectively: see the sequences A002105
and A001469 in [20].

In this paper we consider a sequence of polynomials (F,)5, defined by
Fo(z) = co > 0 and

Gp(z) =

3) Hiy(x)

(2?F2 1 1)F, 1 (1) — 222 F, 1 (7) o 2
(x —1)2 "1

forn =1,2,3,..., where (u,)22; is a sequence of positive numbers and (v,)5,
is a sequence of nonnegative numbers.

Note that the polynomials (4) include all those defined by (2) and (3). In-
deed, selecting in (4) ¢o = 1, u, = 1 and v, = 0 for each n > 1, we get the
sequence of Poupard polynomials (1), while the choice ¢ = 1, u, = 1 and
vp, = Hyp—1(1) for n > 1 leads to the polynomials (3).

With the above assumptions on u,, v, (n > 1) we will not only show that
F,, defined in (4) is a self-reciprocal polynomial with positive coefficients whose
roots are unimodular, but also that the roots of F), are uniformly distributed
along the unit circle as n — oo.

(4) Fo(z) = uy,
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Theorem 1.1. For eachn € N the polynomial defined by (4) is a self-reciprocal
polynomial of degree 2n with positive coefficients if co > 0, u; > 0 and v; > 0
fori=1,....n. If co,u1,...,Upn,V1,...,0, € Z, then F,, € Z[z].

Furthermore, for each n € N all 2n roots of F,, are unimodular. More
precisely, for n > 2 they are of the form e*™1 ... eT¥n  with arguments

O<i < - <Y <7

satisfying

m(2k —1) 27k )

(5) ¢2k71€( nrl nil

fork=1,....[(n+1)/2] and

2k w(2k 4+ 1))

(6) w%e(n—&—l’ n+1

fork=1,... |n/2].

Note that for n = 1 the polynomial F; may have a double root, and so
condition n > 2 is necessary. Indeed, by (4), we find that

Fi(z) = uico(z +1)% + vy (2® + 1).

It is a self-reciprocal quadratic polynomial in R[z] with nonpositive discrimi-
nant, so it has two unimodular roots. However, in the case when v; = 0 it has
a double root at x = —1.

The proof of the first assertion of the theorem (without claiming positivity
of the coefficients of F),) is straightforward. Fix n > 1 and suppose F,,_1 is a
self-reciprocal polynomial of degree 2n — 2. Then, the first summand on the
right hand side of (4) is a degree 2n self-reciprocal polynomial by (1). The
second summand, v, (1 + 2% + - - + 2%7), is either a self-reciprocal polynomial
of degree 2n or zero (when v,, = 0), which implies the first claim of the theorem
by induction on n. Also, if F,,_1 € Z[z] and u,, v, € Z, then F,, € Z[z] by (4).
This proves the second assertion of the theorem, namely, F,, € Z[z].

In all what follows we will prove that the coefficients of F;, are all positive
and also that the roots of F), are unimodular with arguments as indicated in (5)
and (6). There are indeed n arguments in (0, 7), since |(n+1)2| + [n/2] = n.

In the next section we first prove a useful lemma and then state the remaining
part of Theorem 1.1 in terms of cosine polynomials (see Theorem 2.2). In
Section 3 we will complete the proof of Theorem 2.2 and so that of Theorem 1.1.

2. Reduction of the problem to cosine trigonometric polynomials

Throughout, for n > 0 let 7, be the set of cosine trigonometric polynomials

ap, cos(nx) + an—1 cos((n — 1)z) + -+ + ag
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with positive coefficients a,,an_1,...,aq. Set
- o0 () shullnphe) if «+#nk, keZ,
xT) =
" (n+1)(-1)" if z=7k, keZ

By L’Hopital’s rule, the function ¢,, is continuous for each n > 0. Likewise, for
n > j > 0 we define the function

cos((n+1)z)—cos(jz) if SC7A27T]€ keZ
bn,j(z) = {

cos(z)—1

8
(®) (n+1)% — 42 if z=2rk, keZ.

Applying L'Hopital’s rule twice, we see that the function ¢, ; is continuous.
Now, we will prove the following lemma:

Lemma 2.1. Forn > j > 0 the functions ¢, and ¢, ; are cosine trigonometric
polynomials of degree n. Moreover, ¢, has nonnegative coefficients and ¢, ; €

Tn-
Proof. Note that for x # 7k, k € Z,

(9) SHI((’I’L:-)I).Z‘) — einT 4 et(n=2)z 4+ -+ e—i(n=2)z + e—inx7
ST

eilnt Dz _—i(n+l)z

since both sides of this identity are equal to R . The right hand

side of (9) can be written as

(10) 2 cos(nz) + 2cos((n — 2)x) + - - - + 2 cos(x)
for n odd, and

(11) 2 cos(nz) + 2cos((n — 2)x) + -+ - + 2cos(2z) + 1
for n even.

At x = 7k each of (n + 1)/2 summands of (10) is equal to 2(—1)¥, since
n is odd. So the sum on the right hand side of (9) is (n + 1)(—1)*, which
equals (n + 1)(—1)"*. Similarly, at = = 7k each of n/2 first summands of (11)
is equal to 2, since n is even. Thus, the sum on the right hand side of (9) is
2-(n/2) +1=n+1= (n+1)(—=1)"*. Therefore, in view of (7) and (9) we
obtain
(12) ¢n(x) — in® + 6i(an)ac 4ot efi(n72)a: + e~ inT
for each n > 0 and each x € R. By (10), (11), this implies that

on(x) = 2cos(nx) + 2cos((n — 2)x) + - - - + 2 cos(x)
for n odd, and
dn(x) = 2cos(nx) +2cos((n —2)x) + -+ - + 2cos(2x) + 1

for n even. In both cases, n even or odd, ¢, is a cosine trigonometric polynomial
of degree n with nonnegative coefficients.
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In order to prove that ¢, ; is in 7,, we fix two positive integers m and s
satisfying m + s = 2n. Consider the product of two sums

eimz/Q + ei(m—Q)m/Q NI e—i(m—2)r/2 + e—imz/Q — ¢m(x/2)
and
eism/2 + ei(s—2)z/2 NI e—i(s—Q)m/2 + e—isx/2 — ¢S(x/2)

(see (12)). Note that the coefficient for each e*** where 0 < ¢ < n, will be
positive, and the coefficient for e#®, 1 < ¢ < n, is the same as that for e =%,
Consequently,

(13) Pm(2/2)¢s(2/2) € T,
for any positive integers m, s satisfying m + s = 2n. Observe that, by (9) and
(12), for = # 2nk, k € Z, we have

bm(@/2)6 (2) = S2(mF V2/D) sinl(s + a/2)

sin?(z/2)
_ cos((m + s+ 2)x/2) — cos((m — s)x/2)
cos(z) — 1 '

In particular, selecting m =n + j and s = n — j, we find that
cos((n + 1)x) — cos(jx)
cos(z) — 1
At x = 2wk, k € Z, by (7), we get
On (k)5 (k) = ( + D)(=1) " — 4 1) (1)
=(m+j+1)n—j+1)=n+1)*—j>

= Ontj(2/2)ppn—j(2/2).

Now, taking into account (8) and (13) we conclude that

Onj (1) = Onyj(2/2)Pn—;(2/2) € Tn.
This completes the proof of the lemma. O

Suppose F,, € R[z] is a self-reciprocal polynomial of degree 2n. Then,

(14) U, (z) = e ™ F, (&™)
is a cosine trigonometric polynomial of degree n. If U, has n roots in (0, ),
say 0 < 1y < --- <1, <, then e¥™1 . e*¥n are the roots of F), and vice

versa. In particular, all 2n roots of F,, are unimodular if and only if U,, has 2n
roots in [0, 27). The coefficients of F;, are positive if and only if U,, € T,,.
Inserting e*® instead of z into (4) and using (14), by the identities
e2(ntl)iz 4 q 4 2cos((n+ 1)x)
TR (1) =R, ()22 T Y
(e — 1)2 () =e 1(1) 2cos(z) — 2
cos((n + 1)x)

= " Una(0) cos(z) —1 ~
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(elr —1)2 cos(x) — 1’
and |
2R — 1 psin((n + Da)
e2iw —1 sin(x)
we obtain
Vax)U,,_1(0) = U, _ . )
Un(z) = u”cos((nJr )x)Up—1(0) n—1(x) +vnsm((.n+ V)
cos(z) — 1 sin(z)

when x # 7wk, k € Z. Here, for ¢ = 7k, k € Z, the second summand is defined
by (9), (12), while for x = 27k, k € Z, the function

Un—1(0)cos((n+ 1)) — Up—1(2)
cos(z) — 1

is defined by continuity (see also (18) for an explicit expression in terms of (7),
(8) and the coefficients of U, _1).

The unimodularity of the roots of F,, for n = 1 has been explained be-
low Theorem 1.1. The remaining parts of Theorem 1.1 follow from the next
theorem.

Theorem 2.2. Let (u,)52, be a sequence of positive real numbers, and let
(vn)$2y be a sequence of nonnegative real numbers. Consider the sequence
defined by Up(x) = ¢p > 0 and

Un—1(0) cos((n + 1)) — Up—1(x)

(15) Un(.fc) = Uy cos(x) ] + Un(bn(m)
form=1,2,3,.... Then,

(16) U, € T

for each n > 0. Furthermore, for every n > 2 this cosine trigonometric poly-
nomial Uy, in the interval [—m,7) has 2n roots +11, ..., £, where 0 < 1 <

- <ty < belong to the intervals as described in (5) and (6).

3. Proof of Theorem 2.2

The claim (16) is trivial for n = 0. Fix n € N and assume that U,,_; € T,_1,
that is,
Up—1(x) = bp_1cos((n — 1)z) + - - 4 by cos(z) + bo,
where b, _1,...,b1,b9 > 0.
By Lemma 2.1, v,¢,(x) is a degree n cosine trigonometric polynomial with
nonnegative coefficients (2, 0 and possibly 1 if n is even) or zero identically (if
v, = 0). So, in order to show that U, € T,, it suffices to prove that

Un—1(0) cos((n + 1)) — Up—1(2)
cos(z) — 1

(17) € Tn-
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Indeed, from U,,_1(0) = ZZ;& by, it follows that

Up-1(0)cos((n +1)x) — Up_1(z) — “cos((n + 1)x) — cos(jx)
cos(x) — 1 N ;} bi cos(x) — 1

n—1
= bidni(x) €Tn
j=0

by (8) and Lemma 2.1. This finishes the proof of (17) and so that of (16).
Note that, by (15), we have

(18) Un(x) = uy i bjon ;(x) + vndn(x).
j=0

Next, we will investigate the cosine polynomial U,, in the interval [0, x] for
n > 2. Using (7), (8) and (18) at = 0 we derive that

n—1
Un(0) = un > bj((n+1)% = %) + v (n+1) > 0.
§=0
Set ) .
2 2 1
Y = nj—l and z; = W(ni—:_l) for k=0,1,...,n.
Then,

O=yo<20<y1 <21 < <Yn < 2np <27
We have just shown that U, (yo) = U, (0) > 0. We next claim that U, (yx) <0
for k=1,2,...,nand U,(zx) >0 for k=0,1,...,n.

For k=1,...,n it is clear that

sin((n + 1
¢7L(yk) = M =0,
sin(yp)
unless y, = 7. This is only possible if n + 1 is even and k& = (n + 1)/2. Then,
by (7) (with £ = 1), ¢n(7) = (n+1)(=1)" = —n—1. So, foreach k =1,...,n
we have v, ¥, (yx) < 0.

Therefore, in order to show that U,(yx) < 0 for &k = 1,...,n, by (15),
cos((n 4+ 1)yg) = 1 and cos(yx) — 1 < 0, it suffices to verify the inequality
U,—1(0) > Up—1(yx). This is indeed the case in view of n > 2 and U,,_1 € T,,—1,
since then

n—1 n—1
Un1(0) =Y b > > bjcos(jyr) = Un-1(yk),
=0 =0

which is true by b,_1,...,b1,bp > 0 and cos(yx) < 1. Hence, U, (yx) < 0 for
k=1,...,n.

The proof of the inequality U, (zx) > 0 for k = 0,1,...,n is similar. Tt is
clear that ¢,(z;) = 0, unless 2z = 7. In that case, n is even and k = n/2.
Then, by (7), ¢n(m) =n+ 1. So, vy, (2r) > 0 for each k =0,1,...,n.
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Now, as cos((n + 1)z;) = —1, in order to show that U,(zx) > 0 for k =
0,1,...,n, by (15) and cos(zx) — 1 < 0, it suffices to verify the inequality
n—1
Upn—1(0) + Up—1(2) = Z bj(l + cos(jzx)) > 0.
j=0
This is true in view of b,,_1,...,b1,b9 > 0.

The inequalities U, (yx) < 0,k =1,2,...,n,and U,(2z;) > 0,k =0,1,...,n,
imply that U, (z) has a root in each of the open intervals

(207 y1)7 (yla Zl)7 (Zla y2)7 ey (Z’nflvyn)a (y’nv Z'n)

Consequently, the intervals lying in [0, 7] that contain a root of U, can be
described as in (5) and (6). In particular, the interval (0, 7) contains precisely
[(n+1)2] 4+ [n/2] = n roots of U,,. Finally, since U,, € T, any ¢ € (0,7) is a
root of U, whenever —¢ is a root of U,.
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