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SOME POLYNOMIALS WITH UNIMODULAR ROOTS

Artūras Dubickas

Abstract. In this paper we consider a sequence of polynomials defined

by some recurrence relation. They include, for instance, Poupard poly-

nomials and Kreweras polynomials whose coefficients have some combi-
natorial interpretation and have been investigated before. Extending a

recent result of Chapoton and Han we show that each polynomial of this
sequence is a self-reciprocal polynomial with positive coefficients whose

all roots are unimodular. Moreover, we prove that their arguments are

uniformly distributed in the interval [0, 2π).

1. Introduction

A polynomial

F (x) = anx
n + · · ·+ a1x+ a0, an 6= 0,

of degree n is called self-reciprocal or palindromic if ai = an−i for every i =
0, 1, . . . , bn/2c. Equivalently, F (x) = xnF (1/x). For a self-reciprocal polyno-
mial F of degree n the polynomial (xn+4 + 1)F (1)− 2x2F (x) has multiplicity
at least 2 at x = 1, since F ′(1) = nF (1)/2. Consequently, if F (1) 6= 0, then

(1)
(xn+4 + 1)F (1)− 2x2F (x)

(x− 1)2

is a polynomial of degree n+2 with leading coefficient F (1). Inserting x 7→ 1/x
into (1) and multiplying it by xn+2, we get the same polynomial in view of
F (x) = xnF (1/x). Thus, the polynomial (1) is self-reciprocal.

Consider a sequence of polynomials defined by F0(x) = 1, and

(2) Fn(x) =
(x2n+2 + 1)Fn−1(1)− 2x2Fn−1(x)

(x− 1)2

for n = 1, 2, 3, . . .. Recently, in [3] Chapoton and Han showed that for each
n ≥ 1 the polynomial Fn is a self-reciprocal polynomial with positive integer
coefficients such that degFn = 2n, and all 2n roots of Fn lie on the unit
circle. The coefficients of those polynomials appear in a paper of Poupard
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[17] and have some combinatorial interpretation: see the table [17, p. 370]
which corresponds to the coefficients of F0(x) = 1, F1(x) = x2 + 2x + 1,
F2(x) = 4x4 + 8x3 + 10x2 + 8x + 4, etc. The consecutive coefficients of these
polynomials form the sequence A008301 in OEIS [20]. See also [6–8] for some
calculations with the numbers in the Poupard triangle and their generalizations.
In [3], the polynomials (2) are called Poupard polynomials.

The proof of unimodularity of the roots of Poupard polynomials in [3] is
based on a criterion of Lakatos and Losonczi [12]. See also [13] for a more
general result, [14] for a historical context, [15, 18] for some other criteria for
unimodularity of roots of self-inversive polynomials, and, for example, [4, 5, 9,
10,16,19] for some other results concerning polynomials with unimodular roots.

By a similar argument based on [12], in [3] the unimodularity of roots of the
polynomials Gn, n = 0, 1, 2, . . . , of degree 2n+ 1 defined by G0(x) = x+ 1 and

Gn(x) =
(x2n+3 + 1)Gn−1(1)− 2x2Gn−1(x)

(x− 1)2

for n = 1, 2, 3, . . . was established. Since Gn has a root at x = −1 for each
n ≥ 0, by setting Hn(x) = Gn(x)/(x + 1) we get the sequence of polynomials
(Hn)∞n=0, where H0(x) = 1 and

(3) Hn(x) =
2Hn−1(1)(x2n+3 + 1)/(x+ 1)− 2x2Hn−1(x)

(x− 1)2

for n = 1, 2, 3, . . . . The coefficients of the polynomials 21−nHn(x) appear in a
paper of Kreweras [11] and have some combinatorial interpretation too. The
Kreweras triangle have been recently investigated in [1, 2].

It is worth mentioning that (as observed in [3]) the constant terms of Poupard
polynomials and Kreweras polynomials are related to the reduced tangent num-
bers and so-called Genocchi numbers respectively: see the sequences A002105
and A001469 in [20].

In this paper we consider a sequence of polynomials (Fn)∞n=0 defined by
F0(x) = c0 > 0 and

(4) Fn(x) = un
(x2n+2 + 1)Fn−1(1)− 2x2Fn−1(x)

(x− 1)2
+ vn

x2n+2 − 1

x2 − 1

for n = 1, 2, 3, . . . , where (un)∞n=1 is a sequence of positive numbers and (vn)∞n=1

is a sequence of nonnegative numbers.
Note that the polynomials (4) include all those defined by (2) and (3). In-

deed, selecting in (4) c0 = 1, un = 1 and vn = 0 for each n ≥ 1, we get the
sequence of Poupard polynomials (1), while the choice c0 = 1, un = 1 and
vn = Hn−1(1) for n ≥ 1 leads to the polynomials (3).

With the above assumptions on un, vn (n ≥ 1) we will not only show that
Fn defined in (4) is a self-reciprocal polynomial with positive coefficients whose
roots are unimodular, but also that the roots of Fn are uniformly distributed
along the unit circle as n→∞.
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Theorem 1.1. For each n ∈ N the polynomial defined by (4) is a self-reciprocal
polynomial of degree 2n with positive coefficients if c0 > 0, ui > 0 and vi ≥ 0
for i = 1, . . . , n. If c0, u1, . . . , un, v1, . . . , vn ∈ Z, then Fn ∈ Z[x].

Furthermore, for each n ∈ N all 2n roots of Fn are unimodular. More
precisely, for n ≥ 2 they are of the form e±iψ1 , . . . , e±iψn , with arguments

0 < ψ1 < · · · < ψn < π

satisfying

(5) ψ2k−1 ∈
(π(2k − 1)

n+ 1
,

2πk

n+ 1

)
for k = 1, . . . , b(n+ 1)/2c and

(6) ψ2k ∈
( 2πk

n+ 1
,
π(2k + 1)

n+ 1

)
for k = 1, . . . , bn/2c.

Note that for n = 1 the polynomial F1 may have a double root, and so
condition n ≥ 2 is necessary. Indeed, by (4), we find that

F1(x) = u1c0(x+ 1)2 + v1(x2 + 1).

It is a self-reciprocal quadratic polynomial in R[x] with nonpositive discrimi-
nant, so it has two unimodular roots. However, in the case when v1 = 0 it has
a double root at x = −1.

The proof of the first assertion of the theorem (without claiming positivity
of the coefficients of Fn) is straightforward. Fix n ≥ 1 and suppose Fn−1 is a
self-reciprocal polynomial of degree 2n − 2. Then, the first summand on the
right hand side of (4) is a degree 2n self-reciprocal polynomial by (1). The
second summand, vn(1 + x2 + · · ·+ x2n), is either a self-reciprocal polynomial
of degree 2n or zero (when vn = 0), which implies the first claim of the theorem
by induction on n. Also, if Fn−1 ∈ Z[x] and un, vn ∈ Z, then Fn ∈ Z[x] by (4).
This proves the second assertion of the theorem, namely, Fn ∈ Z[x].

In all what follows we will prove that the coefficients of Fn are all positive
and also that the roots of Fn are unimodular with arguments as indicated in (5)
and (6). There are indeed n arguments in (0, π), since b(n+ 1)2c+ bn/2c = n.

In the next section we first prove a useful lemma and then state the remaining
part of Theorem 1.1 in terms of cosine polynomials (see Theorem 2.2). In
Section 3 we will complete the proof of Theorem 2.2 and so that of Theorem 1.1.

2. Reduction of the problem to cosine trigonometric polynomials

Throughout, for n ≥ 0 let Tn be the set of cosine trigonometric polynomials

an cos(nx) + an−1 cos((n− 1)x) + · · ·+ a0
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with positive coefficients an, an−1, . . . , a0. Set

(7) φn(x) =

{
sin((n+1)x)

sin(x) if x 6= πk, k ∈ Z,
(n+ 1)(−1)nk if x = πk, k ∈ Z.

By L’Hôpital’s rule, the function φn is continuous for each n ≥ 0. Likewise, for
n ≥ j ≥ 0 we define the function

(8) φn,j(x) =

{
cos((n+1)x)−cos(jx)

cos(x)−1 if x 6= 2πk, k ∈ Z,
(n+ 1)2 − j2 if x = 2πk, k ∈ Z.

Applying L’Hôpital’s rule twice, we see that the function φn,j is continuous.
Now, we will prove the following lemma:

Lemma 2.1. For n > j ≥ 0 the functions φn and φn,j are cosine trigonometric
polynomials of degree n. Moreover, φn has nonnegative coefficients and φn,j ∈
Tn.

Proof. Note that for x 6= πk, k ∈ Z,

(9)
sin((n+ 1)x)

sin(x)
= einx + ei(n−2)x + · · ·+ e−i(n−2)x + e−inx,

since both sides of this identity are equal to ei(n+1)x−e−i(n+1)x

eix−e−ix . The right hand

side of (9) can be written as

(10) 2 cos(nx) + 2 cos((n− 2)x) + · · ·+ 2 cos(x)

for n odd, and

(11) 2 cos(nx) + 2 cos((n− 2)x) + · · ·+ 2 cos(2x) + 1

for n even.
At x = πk each of (n + 1)/2 summands of (10) is equal to 2(−1)k, since

n is odd. So the sum on the right hand side of (9) is (n + 1)(−1)k, which
equals (n+ 1)(−1)nk. Similarly, at x = πk each of n/2 first summands of (11)
is equal to 2, since n is even. Thus, the sum on the right hand side of (9) is
2 · (n/2) + 1 = n + 1 = (n + 1)(−1)nk. Therefore, in view of (7) and (9) we
obtain

(12) φn(x) = einx + ei(n−2)x + · · ·+ e−i(n−2)x + e−inx

for each n ≥ 0 and each x ∈ R. By (10), (11), this implies that

φn(x) = 2 cos(nx) + 2 cos((n− 2)x) + · · ·+ 2 cos(x)

for n odd, and

φn(x) = 2 cos(nx) + 2 cos((n− 2)x) + · · ·+ 2 cos(2x) + 1

for n even. In both cases, n even or odd, φn is a cosine trigonometric polynomial
of degree n with nonnegative coefficients.
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In order to prove that φn,j is in Tn, we fix two positive integers m and s
satisfying m+ s = 2n. Consider the product of two sums

eimx/2 + ei(m−2)x/2 + · · ·+ e−i(m−2)x/2 + e−imx/2 = φm(x/2)

and

eisx/2 + ei(s−2)x/2 + · · ·+ e−i(s−2)x/2 + e−isx/2 = φs(x/2)

(see (12)). Note that the coefficient for each e±i`x, where 0 ≤ ` ≤ n, will be
positive, and the coefficient for ei`x, 1 ≤ ` ≤ n, is the same as that for e−i`x.
Consequently,

(13) φm(x/2)φs(x/2) ∈ Tn
for any positive integers m, s satisfying m+ s = 2n. Observe that, by (9) and
(12), for x 6= 2πk, k ∈ Z, we have

φm(x/2)φs(x/2) =
sin((m+ 1)x/2) sin((s+ 1)x/2)

sin2(x/2)

=
cos((m+ s+ 2)x/2)− cos((m− s)x/2)

cos(x)− 1
.

In particular, selecting m = n+ j and s = n− j, we find that

cos((n+ 1)x)− cos(jx)

cos(x)− 1
= φn+j(x/2)φn−j(x/2).

At x = 2πk, k ∈ Z, by (7), we get

φn+j(πk)φn−j(πk) = (n+ j + 1)(−1)(n+j)k(n− j + 1)(−1)(n−j)k

= (n+ j + 1)(n− j + 1) = (n+ 1)2 − j2.

Now, taking into account (8) and (13) we conclude that

φn,j(x) = φn+j(x/2)φn−j(x/2) ∈ Tn.

This completes the proof of the lemma. �

Suppose Fn ∈ R[x] is a self-reciprocal polynomial of degree 2n. Then,

(14) Un(x) = e−inxFn(eix)

is a cosine trigonometric polynomial of degree n. If Un has n roots in (0, π),
say 0 < ψ1 < · · · < ψn < π, then e±iψ1 , . . . , e±iψn are the roots of Fn and vice
versa. In particular, all 2n roots of Fn are unimodular if and only if Un has 2n
roots in [0, 2π). The coefficients of Fn are positive if and only if Un ∈ Tn.

Inserting eix instead of x into (4) and using (14), by the identities

e2(n+1)ix + 1

(eix − 1)2
Fn−1(1) = einxFn−1(1)

2 cos((n+ 1)x)

2 cos(x)− 2

= einxUn−1(0)
cos((n+ 1)x)

cos(x)− 1
,
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2e2ixFn−1(eix)

(eix − 1)2
= einx

Un−1(x)

cos(x)− 1
,

and
e2(n+1)ix − 1

e2ix − 1
= einx

sin((n+ 1)x)

sin(x)
,

we obtain

Un(x) = un
cos((n+ 1)x)Un−1(0)− Un−1(x)

cos(x)− 1
+ vn

sin((n+ 1)x)

sin(x)

when x 6= πk, k ∈ Z. Here, for x = πk, k ∈ Z, the second summand is defined
by (9), (12), while for x = 2πk, k ∈ Z, the function

Un−1(0) cos((n+ 1)x)− Un−1(x)

cos(x)− 1

is defined by continuity (see also (18) for an explicit expression in terms of (7),
(8) and the coefficients of Un−1).

The unimodularity of the roots of Fn for n = 1 has been explained be-
low Theorem 1.1. The remaining parts of Theorem 1.1 follow from the next
theorem.

Theorem 2.2. Let (un)∞n=1 be a sequence of positive real numbers, and let
(vn)∞n=1 be a sequence of nonnegative real numbers. Consider the sequence
defined by U0(x) = c0 > 0 and

(15) Un(x) = un
Un−1(0) cos((n+ 1)x)− Un−1(x)

cos(x)− 1
+ vnφn(x)

for n = 1, 2, 3, . . . . Then,

(16) Un ∈ Tn
for each n ≥ 0. Furthermore, for every n ≥ 2 this cosine trigonometric poly-
nomial Un in the interval [−π, π) has 2n roots ±ψ1, . . . ,±ψn, where 0 < ψ1 <
· · · < ψn < π belong to the intervals as described in (5) and (6).

3. Proof of Theorem 2.2

The claim (16) is trivial for n = 0. Fix n ∈ N and assume that Un−1 ∈ Tn−1,
that is,

Un−1(x) = bn−1 cos((n− 1)x) + · · ·+ b1 cos(x) + b0,

where bn−1, . . . , b1, b0 > 0.
By Lemma 2.1, vnφn(x) is a degree n cosine trigonometric polynomial with

nonnegative coefficients (2, 0 and possibly 1 if n is even) or zero identically (if
vn = 0). So, in order to show that Un ∈ Tn it suffices to prove that

(17)
Un−1(0) cos((n+ 1)x)− Un−1(x)

cos(x)− 1
∈ Tn.
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Indeed, from Un−1(0) =
∑n−1
k=0 bk it follows that

Un−1(0) cos((n+ 1)x)− Un−1(x)

cos(x)− 1
=

n−1∑
j=0

bj
cos((n+ 1)x)− cos(jx)

cos(x)− 1

=

n−1∑
j=0

bjφn,j(x) ∈ Tn

by (8) and Lemma 2.1. This finishes the proof of (17) and so that of (16).
Note that, by (15), we have

(18) Un(x) = un

n−1∑
j=0

bjφn,j(x) + vnφn(x).

Next, we will investigate the cosine polynomial Un in the interval [0, π] for
n ≥ 2. Using (7), (8) and (18) at x = 0 we derive that

Un(0) = un

n−1∑
j=0

bj((n+ 1)2 − j2) + vn(n+ 1) > 0.

Set

yk =
2πk

n+ 1
and zk =

π(2k + 1)

n+ 1
for k = 0, 1, . . . , n.

Then,

0 = y0 < z0 < y1 < z1 < · · · < yn < zn < 2π.

We have just shown that Un(y0) = Un(0) > 0. We next claim that Un(yk) < 0
for k = 1, 2, . . . , n and Un(zk) > 0 for k = 0, 1, . . . , n.

For k = 1, . . . , n it is clear that

φn(yk) =
sin((n+ 1)yk)

sin(yk)
= 0,

unless yk = π. This is only possible if n+ 1 is even and k = (n+ 1)/2. Then,
by (7) (with k = 1), φn(π) = (n+ 1)(−1)n = −n− 1. So, for each k = 1, . . . , n
we have vnψn(yk) ≤ 0.

Therefore, in order to show that Un(yk) < 0 for k = 1, . . . , n, by (15),
cos((n + 1)yk) = 1 and cos(yk) − 1 < 0, it suffices to verify the inequality
Un−1(0) > Un−1(yk). This is indeed the case in view of n ≥ 2 and Un−1 ∈ Tn−1,
since then

Un−1(0) =

n−1∑
j=0

bj >

n−1∑
j=0

bj cos(jyk) = Un−1(yk),

which is true by bn−1, . . . , b1, b0 > 0 and cos(yk) < 1. Hence, Un(yk) < 0 for
k = 1, . . . , n.

The proof of the inequality Un(zk) > 0 for k = 0, 1, . . . , n is similar. It is
clear that φn(zk) = 0, unless zk = π. In that case, n is even and k = n/2.
Then, by (7), φn(π) = n+ 1. So, vnψn(zk) ≥ 0 for each k = 0, 1, . . . , n.
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Now, as cos((n + 1)zk) = −1, in order to show that Un(zk) > 0 for k =
0, 1, . . . , n, by (15) and cos(zk)− 1 < 0, it suffices to verify the inequality

Un−1(0) + Un−1(zk) =

n−1∑
j=0

bj(1 + cos(jzk)) > 0.

This is true in view of bn−1, . . . , b1, b0 > 0.
The inequalities Un(yk) < 0, k = 1, 2, . . . , n, and Un(zk) > 0, k = 0, 1, . . . , n,

imply that Un(x) has a root in each of the open intervals

(z0, y1), (y1, z1), (z1, y2), . . . , (zn−1, yn), (yn, zn).

Consequently, the intervals lying in [0, π] that contain a root of Un can be
described as in (5) and (6). In particular, the interval (0, π) contains precisely
b(n+ 1)2c+ bn/2c = n roots of Un. Finally, since Un ∈ Tn, any ψ ∈ (0, π) is a
root of Un whenever −ψ is a root of Un.

References

[1] A. Bigeni, Combinatorial interpretations of the Kreweras triangle in terms of subset

tuples, Electron. J. Combin. 25 (2018), no. 4, Paper No. 4.44, 11 pp.

[2] A. Bigeni, A generalization of the Kreweras triangle through the universal sl2 weight
system, J. Combin. Theory Ser. A 161 (2019), 309–326. https://doi.org/10.1016/j.

jcta.2018.08.005

[3] F. Chapoton and G.-N. Han, On the roots of the Poupard and Kreweras polynomials,

Mosc. J. Comb. Number Theory 9 (2020), no. 2, 163–172. https://doi.org/10.2140/

moscow.2020.9.163

[4] P. Drungilas, Unimodular roots of reciprocal Littlewood polynomials, J. Korean Math.

Soc. 45 (2008), no. 3, 835–840. https://doi.org/10.4134/JKMS.2008.45.3.835
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