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ENUMERATION OF RELAXED COMPLETE PARTITIONS

AND DOUBLE-COMPLETE PARTITIONS

Suhyung An and Hyunsoo Cho

Abstract. A partition of n is complete if every positive integer from 1

to n can be represented by the sum of its parts. The concept of complete
partitions has been extended in several ways. In this paper, we consider

the number of k-relaxed r-complete partitions of n and the number of
double-complete partitions of n.

1. Introduction

A partition of a positive integer n is a finite sequence λ = (λ1, . . . , λ`) with

λi > 0 for all i = 1, . . . , ` and
∑`

i=1 λi = n. Throughout this paper, we arrange
λi in ascending order. We also write partitions in the form λ = (λm1

1 , . . . , λmt
t ),

where the λi are strictly increasing, each mi is the multiplicity of λi, and
` =

∑t
i=1mi. Let p(n) be the number of partitions of n.

MacMahon [4] introduced perfect partitions of n, which can represent every
positive integer less than or equal to n by a unique sum of its parts. For
example, (1, 2, 4) is a perfect partition of 7 because 1 = 1, 2 = 2, 3 = 1 + 2,
4 = 4, 5 = 1 + 4, 6 = 2 + 4, and 7 = 1 + 2 + 4.

One way of generalizing MacMahon’s idea is to eliminate the uniqueness
condition, which was done by Park [6]. A partition λ = (λ1, . . . , λ`) of n is
said to be complete if every integer m with 1 ≤ m ≤ n can be expressed as∑`

i=1 αiλi, where αi ∈ {0, 1}. Note that O’Shea [5] independently defined
the same notion, calling them weak M -partitions. The concept of complete
partitions is further extended by Park [7], Lee and Park [3], and Andrews,
Beck, and Hopkins [1]. First, Park introduced r-complete partitions.
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Definition 1.1 ([7]). Let r be a positive integer. An r-complete partition of
n is a partition λ = (λ1, . . . , λ`) such that each integer m with 1 ≤ m ≤ rn can

be expressed as
∑`

i=1 αiλi, where αi ∈ {0, 1, . . . , r}.
For example, (1, 1, 1, 1) and (1, 1, 2) are complete partitions of 4 and (1, 1, 1,

1), (1, 1, 2), and (1, 3) are 2-complete partitions of 4. Park found the following
result on r-complete partitions.

Theorem 1.2 ([7, Theorem 2.2]). Let λ = (λ1, . . . , λ`) be a partition of n with

λ1 = 1. Then λ is an r-complete partition if and only if λi ≤ 1 + r
∑i−1

j=1 λj for
i = 2, . . . , `.

Lee and Park [3] studied complete partitions with more specified complete-
ness, the double-complete partitions.

Definition 1.3 ([3]). A partition λ = (λm1
1 , . . . , λmt

t ) of n is said to be double-
complete if each integer m with 2 ≤ m ≤ n − 2 can be represented in at least
two different ways as a sum

∑t
i=1 αiλi with αi ∈ {0, 1, . . . ,mi}.

For example, the partition (14, 22) is a double-complete partition of 8 since
2 = 1+1 = 2, 3 = 1+1+1 = 1+2, 4 = 1+1+2 = 2+2, 5 = 1+1+1+2 = 1+2+2,
and 6 = 1+1+1+1+2 = 1+1+2+2. Note that all double-complete partitions
must have at least two 1’s and one 2 as its parts since all the partitions of 2 are
(1, 1) and (2). When n ≥ 5, a double-complete partition of n must represent
3 at least twice as a sum of its parts, implying that it has either three 1’s and
one 2, or two 1’s, one 2, and one 3 as its parts. Moreover, Lee and Park gave
the following result.

Theorem 1.4 ([3, Theorem 2.4]). A partition λ = (λm1
1 , . . . , λmt

t ) of a positive

integer n ≥ 5 is double-complete if and only if λi+1 ≤ −1 +
∑i

j=1mjλj for
2 ≤ i ≤ t− 1 and λ should have at least three 1s and one 2, or two 1s, one 2,
and one 3 as its parts.

Recently, Andrews, Beck, and Hopkins [1] introduced k-step partitions. For
a positive integer k, a partition λ = (λ1, . . . , λ`) with λ1 ≤ k is called a k-step

partition if λi ≤ k +
∑i−1

j=1 λj for i = 2, . . . , `. For example, (2, 2) is not a
complete partition of 4, but it is a 2-step partition.

Let s(n, k) be the number of k-step partitions of n and c(n) be the number of
complete partitions of n. It is clear that c(n) = s(n, 1) by definition. Andrews,
Beck, and Hopkins found the following identity.

Theorem 1.5 ([1, Theorem 9]). For every positive integer k,
∞∑

n=0

s(n, k)qn(1− q)(1− q2) · · · (1− qn+k) = 1.

In particular, c(n) satisfies
∞∑

n=0

c(n)qn(1− q)(1− q2) · · · (1− qn+1) = 1.
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On the other hand, Bruno and O’Shea [2] extended the definition of r-
complete partitions, the k-relaxed r-complete partitions.

Definition 1.6 ([2]). Let k be a nonnegative integer and r be a positive integer.
A partition λ = (λ1, . . . , λ`) of n is called a k-relaxed r-complete partition
(shortly, (k, r)-partition) if no k+ 1 consecutive integers between 1 and rn are

absent from the set {
∑`

i=1 αiλi : αi ∈ {0, 1, . . . , r}}.

For example, the partition (1, 3) is not a complete partition of 4, but it is a
(1, 1)-partition since 1 = 1, 3 = 3, and 4 = 1 + 3.

The concepts of (k, r)-partitions and k-step partitions are introduced in-
dependently. However, the following theorem deduces that a partition λ is
(k − 1, 1)-partition if and only if it is a k-step partition.

Theorem 1.7 ([2, Theorem 1]). A partition λ = (λ1, . . . , λ`) with λ1 ≤ k + 1

is a (k, r)-partition if and only if λi ≤ (k + 1) + r
∑i−1

j=1 λj for i = 2, . . . , `.

In Section 2, we enumerate the number of (k, r)-partitions of n in various
ways and give a matrix equation of this number. As a special case of these
enumerations, we obtain the number of r-complete partitions. Let pr(n, k)
be the number of (k, r)-partitions of n. It is clear that pr(n, 0) = cr(n), the
number of r-complete partitions of n, and p1(n, k) = s(n, k+ 1), the number of
(k + 1)-step partitions of n. The following theorem is one of the main results.

Theorem 1.8. For each nonnegative integer k,

∞∑
n=0

pr(n, k)qn(1− q)(1− q2) · · · (1− qrn+k+1) = 1.

In particular,

∞∑
n=0

cr(n)qn(1− q)(1− q2) · · · (1− qrn+1) = 1.

In Section 3, we focus on the double-complete partitions. We write dc(n) as
the number of double-complete partitions of n and dc1(n), dc2(n), and dc3(n)
as the number of such partitions with additional conditions as follows.

Let DC1(n) (resp. DC2(n)) be the set of all double-complete partitions
(λm1

1 , λm2
2 , λm3

3 , . . . , λmt
t ) of n satisfying λ1 = 1, m1 ≥ 3, λ2 = 2, m2 ≥ 1,

(resp. λ1 = 1, m1 ≥ 2, λ2 = 2, m2 ≥ 1, λ3 = 3, m3 ≥ 1), and DC3(n) =
DC1(n)∩DC2(n). We denote by dci(n) (i = 1, 2, 3) the cardinality of DCi(n).
We enumerate dc(n) by establishing the identities of dc1(n), dc2(n), and dc3(n).

Theorem 1.9. dc(n) = dc1(n) + dc2(n)− dc3(n) for n ≥ 5 and

∞∑
n=5

dc1(n)qn(1− q)(1− q2) · · · (1− qn−1) = q5,
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∞∑
n=7

dc2(n)qn(1− q)(1− q2) · · · (1− qn−1) = q7,

∞∑
n=8

dc3(n)qn(1− q)(1− q2) · · · (1− qn−1) = q8.

2. Results on (k, r)-partitions

First, we introduce previous results about the (k, r)-partitions. We use dxe
and bxc for the least integer greater than or equal to x and the greatest integer
less than or equal to x, respectively. Bruno and O’Shea showed the following
proposition.

Proposition 2.1 ([2, Equation (1) and Proposition 1]). Let λ = (λ1, . . . , λ`)
be a (k, r)-partition of n. Then λ satisfies the following conditions:

(a) λi ≤ (k + 1)(1 + r)i−1 for i = 1, . . . , `.
(b) ` ≥ dlog(1+r)(

rn
k+1 + 1)e.

From this, we can easily prove that the largest part is at most bk+1+rn
1+r c.

Proposition 2.2. Let λ = (λ1, . . . , λ`) be a (k, r)-partition of n. Then λ` ≤
bk+1+rn

1+r c.

Proof. It follows from n − λ` =
∑`−1

i=1 λi that λ` ≤ (k + 1) + r
∑`−1

i=1 λi =

(k + 1) + r(n− λ`) = (k + 1) + rn− rλ`. Hence, λ` ≤ bk+1+rn
1+r c. �

The relation between r-complete partitions and (k, r)-partitions is summa-
rized as follows.

Proposition 2.3. Let cr(n) be the number of r-complete partitions of n and
pr(n, k) be the number of (k, r)-partitions of n. Then cr(n) = pr(n− 1, r).

Proof. Let λ = (λ1, λ2, . . . , λ`) be an r-complete partition of n and λ =
(λ2, λ3, . . . , λ`). Since λ2 ≤ r + 1 by definition, λ is an (r, r)-partition of
n − 1. Similarly, for an (r, r)-partition λ = (λ1, λ2, . . . , λ`) of n − 1, λ∗ =
(1, λ1, λ2, . . . , λ`) is an r-complete partition of n. �

Proposition 2.4. Let cr(n, k) be the number of r-complete partitions of n with
exactly k ones. Then cr(n, k) = pr(n− k, rk)− pr(n− k − 1, rk + r).

Proof. We prove that pr(n − k, rk) = cr(n, k) + pr(n − k − 1, rk + r). Let
λ = (λ1, λ2, . . . , λ`) be an (rk, r)-partition of n− k. We consider two cases. If
λ1 = 1, then λ = (λ2, λ3, . . . , λ`) is an (rk + r, r)-partition of n − k − 1 since
λ2 ≤ (rk + 1) + r. If λ1 6= 1, then λ∗ = (1k, λ1, λ2, . . . , λ`), the partition with
k copies of 1 added to λ, is an r-complete partition of n with exactly k ones
since λ1 ≤ rk + 1. �



ENUMERATION OF RELAXED COMPLETE AND DC PARTITIONS 1283

For a partition λ = (λ1, . . . , λ`) with λ1 ≤ k + 1, let λ(k,r) be a partition
(λ1, . . . , λm) such that m ≤ ` is the largest integer satisfying λi ≤ (k + 1) +

r
∑i−1

j=1 λj for i = 2, . . . ,m. If λ1 > k+1, then we set λ(k,r) = ∅. We now prove
Theorem 1.8.

Proof of Theorem 1.8. Let λ = (λ1, λ2, . . . , λ`), λ1 ≤ k + 1, and λ(k,r) =
(λ1, λ2, . . . , λm) with

∑m
i=1 λi = n. If m < ` and λm+1 ≤ rn+k+1, then it con-

tradicts the fact that m is the largest integer satisfying λi ≤ (k+1)+r
∑i−1

j=1 λj
for i = 2, . . . ,m. Therefore, m < ` implies that λm+1 > rn + k + 1. If
λ = (λ1, λ2, . . . , λ`) with λ1 > k + 1, then λ(k,r) = ∅. Hence, we can divide
λ = (λ1, λ2, . . . , λ`) into a (k, r)-partition λ(k,r) = (λ1, λ2, . . . , λm) of n and a
partition (λm+1, . . . , λ`) whose parts are greater than rn + k + 1. Therefore,
we have

∞∑
n=0

p(n)qn =

∞∏
n=1

1

1− qn
=

∞∑
n=0

pr(n, k)qn∏∞
j=rn+k+2(1− qj)

.

The second identity is straightforward by putting k = 0. �

In the rest of this section, we give an alternative method to count the number
of (k, r)-partitions by using the following matrix relation. For positive integers

r and s with s ≤ r, let Γ
(r,s)
n be the n × n matrix whose entries are γ

(r,s)
i,j =

pr(i−j, rj−s). The matrix Γ
(r,s)
n is lower triangular since pr(i, j) = 0 for i < 0.

Figure 1 shows Γ
(3,2)
10 . The entry γ

(3,2)
4,1 = p3(3, 1), for instance, is 2 because

(1, 1, 1) and (1, 2) are (1, 3)-partitions but (3) is not a (1, 3)-partition.

Γ
(3,2)
10 =



1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0
2 2 1 1 0 0 0 0 0 0
4 3 2 1 1 0 0 0 0 0
6 5 3 2 1 1 0 0 0 0
9 7 5 3 2 1 1 0 0 0
12 10 7 5 3 2 1 1 0 0
18 14 11 7 5 3 2 1 1 0
25 21 15 11 7 5 3 2 1 1


Figure 1. The matrix Γ

(3,2)
10 with γ

(3,2)
i,j = p3(i− j, 3j − 2)

Let M
(r,s)
e (n, k) (resp. M

(r,s)
o (n, k)) be the set of partitions of n − k into

an even (resp. odd) number of distinct parts, whose sizes are less than or

equal to rk − (s − 1). We write µ
(r,s)
e (n, k) =

∣∣∣M (r,s)
e (n, k)

∣∣∣ and µ
(r,s)
o (n, k) =∣∣∣M (r,s)

o (n, k)
∣∣∣. The matrixM(r,s)

n is the n×n matrix whose entries are µ
(r,s)
i,j =
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µ
(r,s)
e (i, j)−µ(r,s)

o (i, j). M(r,s)
n is also lower triangular; see Figure 2 for example.

The matrixM(3,2)
10 has the entries µ

(3,2)
i,j = µ

(3,2)
e (i, j)−µ(3,2)

o (i, j) and the entry

µ
(3,2)
7,4 = 0 since M

(3,2)
e (7, 4) = {(1, 2)} and M

(3,2)
o (7, 4) = {(3)}.

M(3,2)
10 =



1 0 0 0 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0
−1 −1 1 0 0 0 0 0 0 0
1 −1 −1 1 0 0 0 0 0 0
0 0 −1 −1 1 0 0 0 0 0
0 0 0 −1 −1 1 0 0 0 0
0 1 0 0 −1 −1 1 0 0 0
0 1 1 0 0 −1 −1 1 0 0
0 1 0 1 0 0 −1 −1 1 0
0 −1 1 0 1 0 0 −1 −1 1


Figure 2. The matrix M(3,2)

10 with µ
(3,2)
i,j = µ

(3,2)
e (i, j)− µ(3,2)

o (i, j)

The two matrices M(r,s)
n and Γ

(r,s)
n do not seem relevant, but the following

theorem gives a connection between them.

Theorem 2.5. M(r,s)
n · Γ(r,s)

n = In, the identity matrix.

Proof. We show that

n∑
h=1

{
µ(r,s)
e (i, h)− µ(r,s)

o (i, h)
}
pr(h− j, rj − s) =

{
0 if i 6= j,

1 if i = j,

where i, j ∈ {1, 2, . . . , n}.
Let M (r,s)(n, k) = M

(r,s)
e (n, k)∪M (r,s)

o (n, k) and Pr(n, k) be the set of (k, r)-
partitions of n. For sets A and B, A×B is the set of ordered pairs (a, b) when
a ∈ A and b ∈ B. First, for i 6= j, we prove

n∑
h=1

µ(r,s)
e (i, h)pr(h− j, rj − s) =

n∑
h=1

µ(r,s)
o (i, h)pr(h− j, rj − s),

by constructing an involution on
⋃n

h=1

(
M (r,s)(i, h)× Pr(h− j, rj − s)

)
. Let

λ = (λ1, λ2, . . . , λ`) and τ = (τ1, τ2, . . . , τm) with (λ, τ) ∈M (r,s)(i, h)× Pr(h−
j, rj − s). We choose φ(λ, τ) = (λ̄, τ̄) as follows.

If λ` ≥ τm, we set λ̄ = (λ1, λ2, . . . , λ`−1) and τ̄ = (τ1, τ2, . . . , τm, λ`). Hence,
λ̄ ∈ M (r,s)(i, h + λ`) and τ̄ ∈ Pr(h − j + λ`, rj − s) since λ` ≤ rh − (s − 1) =
(rj− s+ 1) + r

∑m
i=1 τi. Therefore, φ(λ, τ) = (λ̄, τ̄) ∈M (r,s)(i, h+λ`)×Pr(h−

j + λ`, rj − s).
If λ` < τm, let λ̄ = (λ1, λ2, . . . , λ`, τm) and τ̄ = (τ1, τ2, . . . , τm−1). We

have λ̄ ∈ M (r,s)(i, h − τm) and τ̄ ∈ Pr(h − j − τm, rj − s) since τm ≤ (rj −
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s + 1) + r(
∑m−1

i=1 τi) = r(h − τm) − (s − 1). Therefore, φ(λ, τ) = (λ̄, τ̄) ∈
M (r,s)(i, h− τm)× Pr(h− j − τm, rj − s).

In both cases, the numbers of parts of λ and λ̄ differ by 1, so they have
opposite parities. Thus, the map φ is an involution on

⋃n
h=1

(
M (r,s)(i, h) ×

Pr(h− j, rj − s)
)

and we have

n∑
h=1

µ(r,s)
e (i, h)pr(h− j, rj − s) =

n∑
h=1

µ(r,s)
o (i, h)pr(h− j, rj − s).

Now, it remains to show that
n∑

h=1

µ(r,s)
e (i, h)pr(h− i, ri− s)−

n∑
h=1

µ(r,s)
o (i, h)pr(h− i, ri− s) = 1.

For λ ∈ M (r,s)(i, h) and τ ∈ Pr(h − i, ri − s), it must be h = i since λ
and τ are partitions of i − h and h − i, respectively. Therefore, there is a

unique partition pair (∅, ∅) ∈
⋃n

h=1

(
M

(r,s)
e (i, h)× Pr(h− i, ri− s)

)
and there

is no element in
⋃n

h=1

(
M

(r,s)
o (i, h) × Pr(h − i, ri − s)

)
, which completes the

proof. �

For example, two partition pairs ((1), (1, 1, 1)) and ((1), (1, 2)) are elements

in the set M
(3,2)
o (5, 4) × P3(3, 1). According to the proof of Theorem 2.5,

φ(λ, τ) = (∅, (1, 1, 1, 1)) ∈ M (3,2)
e (4, 4) × P3(4, 1) when (λ, τ) = ((1), (1, 1, 1))

and φ(λ, τ) = ((1, 2), (1)) ∈M (3,2)
e (7, 4)× P3(1, 1) when (λ, τ) = ((1), (1, 2)).

3. Results on double-complete partitions

We first rewrite Definition 1.3 and Theorem 1.4 by using the notation for a
partition λ = (λ1, . . . , λ`), where the λi are nondecreasing.

Definition 3.1. A double-complete partition of n is a partition λ = (λ1, . . . , λ`)
such that each integer m with 2 ≤ m ≤ n − 2 can be represented in at least

two different ways as
∑`

i=1 αiλi with αi ∈ {0, 1}.
Theorem 3.2. For a positive integer n ≥ 5, a partition λ = (λ1, . . . , λ`) of n
is double-complete if and only if λ satisfies one of the following:

(a) λ1 = λ2 = λ3 = 1, there is 4 ≤ i ≤ ` such that λi = 2, and λi ≤
−1 +

∑i−1
j=1 λj for each i = 4, . . . , `.

(b) λ1 = λ2 = 1, λ3 = 2, there is 4 ≤ i ≤ ` such that λi = 3, and

λi ≤ −1 +
∑i−1

j=1 λj for each i = 4, . . . , `.

Proof. (⇒) Suppose that there exists i ≥ 4 such that λi ≥
∑i−1

j=1 λj . For such

i,
∑i−1

j=1 λj−1 =
∑i−1

j=2 λj cannot be represented in two different ways as a sum
of parts of λ, which is a contradiction.

(⇐) We prove it by using the induction on `. First, partitions of n ≥ 5
into 4 parts satisfying the conditions (a) or (b) are (1, 1, 1, 2) and (1, 1, 2, 3),
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and they are double-complete partitions by definition. Suppose (λ1, . . . , λ`) is
a partition of n ≥ 5 into ` ≥ 4 parts satisfying the conditions (a) or (b), and
it is double-complete. We claim that (λ1, . . . , λ`, λ`+1) with λ`+1 ≤ n− 1 is a
double-complete partition of n+ λ`+1. Since (λ1, . . . , λ`) is a double-complete
partition of n, each integer m with 2 ≤ m ≤ n − 2 can be represented in at
least two different ways as a sum of its parts. Hence, it remains to show that
each integer m′ with n− 1 ≤ m′ ≤ n+ λ`+1 − 2 can be represented in at least
two different ways as a sum of parts of (λ1, . . . , λ`, λ`+1).

If λ`+1 + 2 ≤ m′ ≤ n + λ`+1 − 2, then m′ − λ`+1 can be represented in
at least two different ways as a sum of parts of (λ1, . . . , λ`), which follows
that m′ can be represented in at least two different ways as a sum of parts of
(λ1, . . . , λ`, λ`+1).

We now consider for n−1 ≤ m′ ≤ λ`+1+1, that is eitherm′ = n−1 = λ`+1 or
m′ = 1+λ`+1 since λ`+1 ≤ n−1. In the former case, m′ = n−1 can be written

as
∑`

i=2 λi and λ`+1. In the latter case, either m′ = n−1 =
∑`

i=2 λi = 1+λ`+1

or m′ = n =
∑`

i=1 λi = 1 + λ`+1 holds. This completes the proof. �

Now, we provide a proof of Theorem 1.9 by using Theorem 3.2.

Proof of Theorem 1.9. Note that dc(n) = dc1(n)+dc2(n)−dc3(n) by Theorem
3.2 and the inclusion-exclusion principle. The proof of the identities for dc1(n),
dc2(n), and dc3(n) are almost the same, so we here only prove the identity
for dc1(n). Let λ = (λ1, . . . , λ`) be a partition with at least three 1’s and one
2 as its parts and λ∗ = (λ1, . . . , λm) such that m ≤ ` is the greatest integer

satisfying λi ≤ −1 +
∑i−1

j=1 λj for i = 4, . . . ,m. It follows from Theorem 3.2

that if
∑m

i=1 λi = n and m < `, then λm+1 ≥ n. Hence, similarly to the proof
of Theorem 1.8, we have

∞∑
n=5

p(n− 5)qn = q5
∞∑

n=0

p(n)qn = q5
∞∏

n=1

1

1− qn
=

∞∑
n=5

dc1(n)qn∏∞
j=n(1− qj)

.
�
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