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SECOND MAIN THEOREM WITH WEIGHTED COUNTING

FUNCTIONS AND UNIQUENESS THEOREM

Liu Yang

Abstract. In this paper, we obtain a second main theorem for holo-

morphic curves and moving hyperplanes of Pn(C) where the counting
functions are truncated multiplicity and have different weights. As its

application, we prove a uniqueness theorem for holomorphic curves of

finite growth index sharing moving hyperplanes with different multiple
values.

1. Introduction

In the recent paper [9], Ru-Sibony developed value distribution theory for a
class of holomorphic curves where the source is a disc of radius R instead of C.
In doing so, they introduced the notion of the growth index, denoted by cf,ω,
for a holomorphic curve.

Definition. Let M be a complex manifold and ω be a positive (1, 1) form of
finite volume on M. Let 0 < R ≤ +∞ and f : ∆(R) → M be a holomorphic
curve. Recall that the characteristic function of f with respect to w, for 0 <
r < R, as Tf,w(r) =

∫ r
0
dt
t

∫
|z|<r f

∗w. We define the growth index of f with
respect to ω as

cf,ω =: inf
{
c > 0 :

∫ R

0

exp(c Tf,ω(r))dr =∞
}
.

When M is the complex projective space Pn(C), the positive (1, 1) form is
the Fubini-Study form, i.e., ω = ωFS . For a holomorphic curve f : ∆(R) →
Pn(C), denote by cf the growth index of f with respect to ωFS . For convenient,
we set cf = +∞, if{

c > 0 :

∫ R

0

exp (cTf (r)) dr = +∞

}
= ∅.
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In the same paper [9], Ru-Sibony obtained the following second main theorem
for the nondegenerate holomorphic curves from the disk.

Theorem A. Let f : ∆(R)→ Pn(C) be a linearly nondegenerate holomorphic
curve with cf < +∞ and 0 < R ≤ +∞. Then for any ε > 0, the inequality

(q − n− 1)Tf (r) ≤
q∑
j=1

N
[n]
f (r,Hj) +

n(n+ 1)

2
(1 + ε)(cf + ε)Tf (r)

+O(log Tf (r)) +
n(n+ 1)

2
ε log r

holds for all r ∈ (0, R) outside a set E ⊂ (0, R) with
∫
E

exp((cf + ε)Tf (r))dr <
∞.

Recently, S. D. Quang [6] established some new second main theorems for
holomorphic curves from the disk with infinite growth index into Pn(C) and
moving hyperplanes.

Theorem B. Let f : ∆(R)→ Pn(C) (0 < R ≤ +∞) be a holomorphic curve.
Let {aj}qj=1 (q ≥ 2n − k + 2) be holomorphic curves of ∆(R) into Pn(C)∗ in

general position such that (f, aj) 6≡ 0 (1 ≤ j ≤ q). Assume that rankR{ai}(f) =
k + 1. Let γ(r) be a non-negative measurable function defined on (0, R) with∫ R
0
γ(r)dr =∞. Then for every ε > 0, we have∥∥∥

E
Tf (r) ≤ n+ 2

q − (n− k)

q∑
j=1

N
[k]
(f,aj)

(r) + S(r)

+
k(k + 2)(n+ 1)

2(n+ 2)
((1 + ε) log γ(r) + ε log r).

Here and subsequently, the notation “‖E P” means the assertion P holds for
all r ∈ (0, R) outside a set E with

∫
E
γ(r)dr <∞,

S(r) := O

(
log Tf (r) + max

1≤i≤q
Tai(r)

)
.

And rankR(f) is the rank of the set {f0, . . . , fn} over the field R for a re-
duced representation (f0, . . . , fn) of the mapping f , and (f, g) =

∑n
i=0 gifi

for each holomorphic mapping g : C → Pn(C)∗ with a reduced representation
(g0, . . . , gn).

In 2015, Quang [4] initially introduced the second main theorem with weight-
ed counting functions. Inspired by this idea and the technique shown in [4],
we generalize Theorem B for the mappings and moving hyperplanes of Pn(C)
to the case where the counting functions are truncated multiplicity and have
different weights. The uniqueness theory for meromorphic mappings from Cm

into Pn(C) with shared moving targets is an interesting topic (see [1, 3, 5, 8]
and the references given there). More recently, some uniqueness results for
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holomorphic curves of finite growth index sharing fixed hyperplanes have pre-
viously been studied in [10, 11]. As application of our general form of second
main theorem, the second purpose of this article is to prove a uniqueness theo-
rem for holomorphic curves of finite growth index sharing moving hyperplanes
with different multiple values. For some related notions see Section 2.

Theorem 1.1 (Second Main Theorem). Let f : ∆(R) → Pn(C) (0 < R ≤
+∞) be a holomorphic curve. Let {aj}qj=1 (q ≥ 2n − k + 2) be holomorphic

curves of ∆(R) into Pn(C)∗ in general position such that (f, aj) 6≡ 0 (1 ≤ j ≤
q). Assume that rankR{ai}(f) = k + 1. Let γ(r) be a non-negative measurable

function defined on (0, R) with
∫ R
0
γ(r)dr = ∞. Let λ1, . . . , λq be q positive

numbers with (2n − k + 2) max1≤i≤q λi ≤
∑q
i=1 λi. Then for every ε > 0 and

η ∈
[
max1≤i≤q λi,

∑q
i=1 λi

2n−k+2

]
, we have∥∥∥

E

∑q
j=1 λj − (n− k)η

n+ 2

{
Tf (r)− k(n+ 1)

2
log γ(r)

}
≤

q∑
j=1

λjN
[k]
(f,aj)

(r) + S(r) + ε log(rγ(r)).

Letting λ1 = · · · = λq = 1 and η = 1 from Theorem 1.1, we get Theorem B

in some sense. Letting η =
∑q
i=1 λi

2n−k+2 , we have the following corollary.

Corollary 1.2. Let f : ∆(R) → Pn(C) (0 < R ≤ +∞) be a holomorphic
curve. Let {aj}qj=1 (q ≥ 2n − k + 2) be holomorphic curves of ∆(R) into

Pn(C)∗ in general position such that (f, aj) 6≡ 0 (1 ≤ j ≤ q). Assume that
rankR{ai}(f) = k + 1. Let γ(r) be a non-negative measurable function de-

fined on (0, R) with
∫ R
0
γ(r)dr = ∞. Let λ1, . . . , λq be q positive numbers with

(2n− k + 2) max1≤i≤q λi ≤
∑q
i=1 λi. Then for every ε > 0, we have∥∥∥

E

∑q
j=1 λj

2n− k + 2

{
Tf (r)− k(n+ 1)

2
log γ(r)

}
≤

q∑
j=1

λjN
[k]
(f,aj)

(r) + S(r) + ε log(rγ(r)).

In addition, if we take λ1 = · · · = λq = 1 in Corollary 1.2, we get the
following result.

Corollary 1.3. Let f : ∆(R) → Pn(C) (0 < R ≤ +∞) be a holomorphic
curve. Let {aj}qj=1 (q ≥ 2n − k + 2) be holomorphic curves of ∆(R) into

Pn(C)∗ in general position such that (f, aj) 6≡ 0 (1 ≤ j ≤ q). Assume that
rankR{ai}(f) = k + 1. Let γ(r) be a non-negative measurable function defined

on (0, R) with
∫ R
0
γ(r)dr =∞. Then for every ε > 0, we have∥∥∥
E

q

2n− k + 2

{
Tf (r)− k(n+ 1)

2
log γ(r)

}
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≤
q∑
j=1

N
[k]
(f,aj)

(r) + S(r) + ε log(rγ(r)).

Before stating our uniqueness theorem, we introduce a definition. Assume
that a is a holomorphic curve of ∆(R) into Pn(C)∗, and f is a meromorphic
mapping of Cm into Pn(C). If the mapping a is a small function with respect
to f, that is ||E Ta(r) = o(Tf (r)), then a is said to be a slowly (with respect
to f) moving hyperplane in Pn(C).

Theorem 1.4 (Uniqueness Theorem). Let f, g : ∆(R) → Pn(C) be holomor-
phic curves of finite growth index cf , cg < +∞. Let {ai}qi=1 be slowly (with
respect to f and g) moving hyperplanes in Pn(C) in general position such that

(i) (f, ai)
−1 {0} ∩ (f, aj)

−1 {0} = ∅ (1 ≤ i < j ≤ q),
(ii) ν1(f,ai),≤mi = ν1(g,ai),≤mi(1 ≤ i ≤ q),

(iii) f(z) = g(z) for all z ∈
⋃q
i=1

{
z ∈ ∆(R) : 0 < ν(f,ai)(z) ≤ mi

}
.

Assume that rankR (f) = rankR (g) = k + 1, q ≥ 2k(2n− k + 1) + 2,
q∑
i=1

k

mi + 1− k
<
q(q − 2k(2n− k + 1)− 2)

(q + 2k − 2)(2n− k + 1)
,

max
1≤i≤q

k

mi + 1− k
≤ q

2n− k + 1
− 1,

and

min {cf , cg} <
1

k(n+ 1)

(
q(q − 2)(2n− k + 2)

(q + 2k − 2)
∑q
i=1

mi+1
mi+1−k

− 2n+ k − 1

)
.

Then f = g.

In the case where R = +∞, we have cf = cg = 0, see [9]. Thus our results
also include the following unicity theorem for holomorphic curves on the whole
complex plane.

Corollary 1.5. Let f, g : C → Pn(C) be holomorphic curves. Let {ai}qi=1

be slowly (with respect to f and g) moving hyperplanes in Pn(C) in general
position such that

(i) (f, ai)
−1 {0} ∩ (f, aj)

−1 {0} = ∅ (1 ≤ i < j ≤ q),
(ii) ν1(f,ai),≤mi = ν1(g,ai),≤mi(1 ≤ i ≤ q),

(iii) f(z) = g(z) for all z ∈
⋃q
i=1

{
z ∈ C : 0 < ν(f,ai)(z) ≤ mi

}
.

Assume that rankR (f) = rankR (g) = k + 1, q ≥ 2k(2n− k + 1) + 2,
q∑
i=1

k

mi + 1− k
<
q(q − 2k(2n− k + 1)− 2)

(q + 2k − 2)(2n− k + 1)

and

max
1≤i≤q

k

mi + 1− k
≤ q

2n− k + 1
− 1.
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Then f = g.

In particular, if we take mi = +∞ (1 ≤ i ≤ q), we have:

Corollary 1.6. Let f, g : C → Pn(C) be holomorphic curves. Let {ai}qi=1

be slowly (with respect to f and g) moving hyperplanes in Pn(C) in general
position such that

(i) (f, ai)
−1 {0} ∩ (f, aj)

−1 {0} = ∅ (1 ≤ i < j ≤ q),
(ii) ν1(f,ai) = ν1(g,ai)(1 ≤ i ≤ q),

(iii) f(z) = g(z) for all z ∈
⋃q
i=1 (f, ai)

−1 {0}.
If rankR (f) = rankR (g) = k + 1, q ≥ 2k(2n− k + 1) + 2, then f = g.

2. Preliminaries

In this section, we state some basic notions in value distribution for holo-
morphic curves. For more details we refer the reader to [2, 7].

LetD be a domain in C, f : D → Pn(C) be a holomorphic curve and U be an

open set in D. Any holomorphic curve f̃ : U → Cn+1 such that P(f̃(z)) ≡ f(z)
in U is called a representation of f on U, where P : Cn+1\{0} → Pn(C) is the
standard projective map.

Definition. For an open subset U ofD we call a representation f̃ = (f0, . . . , fn)
a reduced representation of f on U if f0, . . . , fn are holomorphic functions on
U without common zeros.

Remark 2.1. As is easily seen, if both f̃j : Uj → Cn+1 are reduced representa-
tions of f for j = 1, 2 with U1 ∩ U2 6= ∅, then there is a holomorphic function
h( 6= 0) : U1 ∩ U2 → C such that f̃2 = hf̃1 on U1 ∩ U2.

Let 0 < R ≤ +∞ and f be a holomorphic curve from the disc ∆(R) into
the complex projective space Pn(C) and let

f̃ = (f1, . . . , fn+1) : ∆(R)→ Cn+1\{000}

be a reduced representation of f, where n is a positive integer. We use the
following notations:

‖f̃(z)‖ = (|f1(z)|2 + · · ·+ |fn+1(z)|2)
1
2 .

The Cartan’s characteristic function of f is defined as follows:

Tf (r) =
1

2π

∫ 2π

0

log ‖f̃(reiθ)‖dθ − log ‖f̃(0)‖,

where 0 < r < R.

Remark 2.2. The above definition is independent, up to an additive constant,
of the choice of the reduced representation of f.
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The Ahlfors’ characteristic function of f is defined as follows:

Tf,ωFS (r) =

∫ r

0

dt

t

∫
|z|<t

f∗ωFS ,

where f∗ωFS is the pullback of Fubini-Study metric form ωFS under the curve
f.

Remark 2.3. It follows from Green-Jensen’s formula that Ahlfors’ characteristic
function agrees with Cartan’s characteristic function.

For a divisor ν on ∆(R) and for a positive integer M or M = +∞, we define
the counting function of ν by

ν[M ](z) = min{ν(z),M}, n[M ](t, ν) =
∑
|z|≤t

ν[M ](z), 0 < t < R.

Define

N
[M ]
F (r, ν) =

∫ r

0

n[M ](t, ν)

t
dt, 0 < r < R.

Let F : ∆(R)→ C be a holomorphic function. Define

NF (r) = N(r, νF ), N
[M ]
F (r) = N [M ](r, νF ), 0 < r < R.

For brevity we will omit the character [M ] if M = +∞.
Let k,M be positive integers or +∞. For a divisor ν on C. Set

ν
[M ]
≤k (z) =

{
0, if ν(z) > k,

ν[M ](z), if ν(z) ≤ k,

and

n
[M ]
≤k (t) =

∑
|z|≤t

ν
[M ]
≤k (z).

We define

N
(
r, ν

[M ]
≤k

)
=

∫ r

1

n
[M ]
≤k (t)

t2n−1
dt (r > 1).

Similarly, we define n
[M ]
≥k (t) and N

(
r, νM≥k

)
, and denote them by N

[M ]
≤k (r, ν)

and N
[M ]
≥k (r, ν), respectively.

Assume that a is a moving hyperplane of ∆(R) into Pn(C) (i.e., a holo-
morphic curve of ∆(R) into Pn(C)∗), and f is a holomorphic curve of C
into Pn(C) with (f, a) =

∑n
i=0 fiai 6≡ 0. Then, using the zero divisor ν0(f,a)

we define N(f,a)(r) := N
(
r, ν0(f,a)

)
. We note that N(f,a)(r) measures how

many times f take value in the moving hyperplane a. Similarly, we have

N
[M ]
(f,a)(r), N

[M ]
(f,a),≤k(r), N

[M ]
(f,a),≥k(r), etc.

To prove our result, we need the following lemma due to Quang [6, Theorem
1.1, Eq. (2.10)].
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Lemma 2.4. Let f : ∆(R)→ Pn(C) (0 < R ≤ +∞) be a holomorphic curve.
Let {aj}qj=1 (q ≥ 2n − k + 2) be holomorphic curves of ∆(R) into Pn(C)∗ in

general position such that (f, aj) 6≡ 0 (1 ≤ j ≤ q). Assume that rankR{ai}(f) =
k+1. Then there exist a subset J ⊂ {1, . . . , 2n−k+2} with |J | = d+2 (≤ n+2)

and a positive integer n0 ≤ k(k+2)
d+2 such that∥∥∥

E
Tf (r) ≤

∑
j∈J

N
[n0]
(f,aj)

(r) + S(r) +
n0(d+ 1)

2
((1 + ε) log γ(r) + ε log r),

where S(r) = O (log Tf (r) + max1≤i≤q Tai(r)) .

3. Proofs

Proof of Theorem 1.1. We denote by I the set of all permutations of q-tuple
(1, . . . , q). For each element I = (i1, . . . , iq) ∈ I, we set

NI =

{
r ∈ R+ : N

[k]

(f,ai1)
(r) ≤ · · · ≤ N [k]

(f,aiq )
(r)

}
.

Fix a permutation I = (i1, . . . , iq) ∈ I. Since η ≤
∑q
i=1 λi

2n−k+2 <
∑q
i=1 λi
n−k by as-

sumption,
∑q
j=1 λj − (n− k)η > 0. Applying Lemma 2.4, there exists a subset

J0 ⊂ {1, . . . , 2n− k + 2} with |J0| = n+ 2 such that

‖E Tf (r)− k(n+ 1)

2
log γ(r)(1)

≤
∑
l∈J0

N
[k]

(f,ail)
(r) + S(r) +

ε log(rγ(r))∑q
j=1 λj − (n− k)η

.

Put J1 = {1, . . . , 2n− k + 2}\J0 and

J2 =

{
{2n− k + 3, . . . , q}, if q > 2n− k + 2,

∅, if q = 2n− k + 2,

then |J1| = (2n− k + 2)− |J0| = n− k. Hence, we observe from (1) that

‖E

 q∑
j=1

λj − (n− k)η

{Tf (r)− k(n+ 1)

2
log γ(r)

}

≤

 q∑
j=1

λj − (n− k)η

∑
l∈J0

N
[k]

(f,ail)
(r) + S(r) + ε log(rγ(r))

≤

 ∑
j∈J0

⋃
J2

λij

∑
l∈J0

N
[k]

(f,ail)
(r) +

∑
j∈J1

λij − (n− k)η

∑
l∈J0

N
[k]

(f,ail)
(r)

+ S(r) + ε log(rγ(r)).
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Note that
∑
j∈J1 λij − (n− k)η > 0 since η ≥ max1≤i≤q{λi}. We then have

‖E

 q∑
j=1

λj − (n− k)η

{Tf (r)− k(n+ 1)

2
log γ(r)

}
(2)

≤

 ∑
j∈J0

⋃
J2

λij

∑
l∈J0

N
[k]

(f,ail)
(r) + S(r) + ε log(rγ(r)).

It is easily seen that ∑
j∈J0

⋃
J2

λij

∑
l∈J0

N
[k]

(f,ail)
(r)(3)

= |J0|
{∑
l∈J0

λilN
[k]

(f,ail)
(r) +

∑
j∈J0

⋃
J2
λij

|J0|
∑
l∈J0

N
[k]

(f,ail)
(r)−

∑
l∈J0

λilN
[k]

(f,ail)
(r)

}

= (n+ 2)

{∑
l∈J0

λilN
[k]

(f,ail)
(r) +

∑
l∈J0

(∑
j∈J0

⋃
J2
λij

n+ 2
− λil

)
N

[k]

(f,ail)
(r)

}
.

Next we estimate
∑
l∈J0

(∑
j∈J0

⋃
J2
λij

n+2 − λil
)
N

[k]

(f,ail)
(r) for r ∈ NI . By the

definition of NI , we get

∑
l∈J0

(∑
j∈J0

⋃
J2
λij

n+ 2
− λil

)
N

[k]

(f,ail)
(r)(4)

≤
∑
l∈J0

(∑
j∈J0

⋃
J2
λij

n+ 2
− λil

)
N

[k]

(f,ai2n−k+2)
(r)

=

 ∑
j∈J0

⋃
J2

λij −
∑
l∈J0

λil

N
[k]

(f,ai2n−k+2)
(r)

=

 q∑
j=2n−k+3

λij

N
[k]

(f,ai2n−k+2)
(r)

≤
q∑

j=2n−k+3

λijN
[k]

(f,aij )
(r).

Therefore, combining (1), (2), (3) and (4), for all r ∈ NI , we have

‖E

 q∑
j=1

λj − (n− k)η

{Tf (r)− k(n+ 1)

2
log γ(r)

}
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≤ (n+ 2)

∑
l∈J0

λilN
[k]

(f,ail)
(r) +

q∑
j=2n−k+3

λijN
[k]

(f,ai2n−k+2)
(r)


+ S(r) + ε log(rγ(r))

≤ (n+ 2)

q∑
j=1

λjN
[k]
(f,aj)

(r) + S(r) + ε log(rγ(r)).

Hence, for r ∈ NI , we have

‖E

∑q
j=1 λj − (n− k)η

n+ 2

{
Tf (r)− k(n+ 1)

2
log γ(r)

}
(5)

≤
q∑
j=1

λjN
[k]
(f,aj)

(r) + S(r) + ε log(rγ(r)).

We see that
⋃
I∈I NI = (0, R) and then the inequality (5) holds for every

r ∈ (0, R) outside a subset E with
∫
E
γ(r)dr = +∞. Hence, the theorem is

proved. �

Proof of Theorem 1.4. We assume, to the contrary, that f 6≡ g. By changing
indices, if necessary, we may assume that

(f, a1)

(g, a1)
≡ (f, a2)

(g, a2)
≡ · · · ≡ (f, ak1)

(g, ak1)︸ ︷︷ ︸
group 1

6≡ (f, ak1+1)

(g, ak1+1)
≡ · · · ≡ (f, ak2)

(g, ak2)︸ ︷︷ ︸
group 2

6≡ (f, ak2+1)

(g, ak2+1)
≡ · · · ≡ (f, ak3)

(g, ak3)︸ ︷︷ ︸
group 3

6≡ · · · 6≡
(f, aks−1+1)

(g, aks−1+1)
≡ · · · ≡ (f, aks)

(g, aks)︸ ︷︷ ︸
group s

,

where ks = q. The hypothesis of “in general position” implies that the number
of each group does not exceed n.

We define the map σ : {1, . . . , q} → {1, . . . , q} by

σ(j) =

{
j + n, if j + n ≤ q,
j + n− q, if j + n > q.

It is easy to see that σ is bijective and |σ(j)− j| ≥ n for each 1 ≤ j ≤ q (note

q > 2n). Hence
(f,aj)
(g,aj)

and
(f,aσ(j))

(g,aσ(j))
belong to distinct groups for each 1 ≤ j ≤ q.

Set

Pj = (f, aj)(g, aσ(j))− (g, aj)(f, aσ(j)) (1 ≤ j ≤ q).
Since f 6≡ g, we get that Pj 6≡ 0. And hence P :=

∏q
j=1 Pj 6≡ 0.

Fix an index i with 1 ≤ i ≤ q. It is easy to see for every z ∈ ∆(R),

νPi(z) ≥ min
{
ν(f,ai),≤mi(z), ν(g,ai),≤mi(z)

}
+ min

{
ν(f,aσ(i)),≤mσ(i)(z), ν(g,aσ(i)),≤mσ(i)(z)

}
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+

q∑
v=1

v 6=i,(i)

ν
[1]
(f,av),≤mv (z)

≥
∑

v=i,σ(i)

(
min

{
k, ν(f,av),≤mv

}
+ min

{
k, ν(f,av),≤mv

}
−kmin

{
1, ν(f,av),≤mv

})
(z) +

∑
v=1

v 6=i,(i)

ν
[1]
(f,av),≤mv (z).

Integrating both sides of the above inequality, we have

NPi(r) ≥
∑

v=i,σ(i)

(
N

[k]
(f,av),≤mv (r) +N

[k]
(g,av),≤mv (r)− kN [1]

(f,av),≤mv (r)
)

+

q∑
v=1

v 6=i,σ(i)

N
[1]
(f,av),≤mv (r)

=
∑

v=i,σ(i)

(
N

[k]
(f,av),≤mv (r) +N

[k]
(g,av),≤mv (r)

)

+

q∑
v=1

N
[1]
(f,av),≤mv (r)−

∑
v=i,σ(i)

(k + 1)N
[1]
(f,av),≤mv (r)

for all 1 ≤ i ≤ q. Thus, by summing them up, we obtain

NP (r) ≥ 2

q∑
i=1

(
N

[k]
(f,ai),≤mi(r) +N

[k]
(g,ai),≤mi(r)

)
(6)

+
q − 2k − 2

2

q∑
i=1

(
N

[1]
(f,ai),≤mi(r) +N

[1]
(g,ai),≤mi(r)

)
≥ 2

q∑
i=1

(
N

[k]
(f,ai),≤mi(r) +N

[k]
(g,ai),≤mi(r)

)
+
q − 2k − 2

2k

q∑
i=1

(
N

[k]
(f,ai),≤mi(r) +N

[k]
(g,ai),≤mi(r)

)
=
q + 2k − 2

2k

q∑
i=1

(
N

[k]
(f,ai),≤mi(r) +N

[k]
(g,ai),≤mi(r)

)
.

We check at once that

N
[k]
(f,ai),≤mi(r) ≥ N

[k]
(f,ai)

(r)− k

mi + 1
N(f,ai),>mi(r)

≥ N [k]
(f,ai)

(r)− k

mi + 1

(
N(f,ai)(r)−N

[k]
(f,ai),≤mi(r)

)
,
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which, together with First Main Theorem, implies(
1− k

mi + 1

)
N

[k]
(f,ai),≤mi(r) ≥ N

[k]
(f,ai)

(r)− k

mi + 1
N(f,ai)(r)(7)

≥ N [k]
(f,ai)

(r)− k

mi + 1
Tf (r).

Let λi = mi+1
mi+1−k . Then k

mi+1−k = λi − 1, 1 ≤ i ≤ q. Hence, we have

q∑
i=1

N
[k]
(f,ai),≤mi(r) ≥

q∑
i=1

(
λiN

[k]
(f,ai)

(r)− (λi − 1)Tf (r)
)

(8)

and
q∑
i=1

N
[k]
(g,ai),≤mi(r) ≥

q∑
i=1

(
λiN

[k]
(g,ai)

(r)− (λi − 1)Tg(r)
)

(9)

by (7).
By combining (6), (8) and (9), we have

NP (r) ≥ q + 2k − 2

2k

q∑
i=1

(
λiN

[k]
(f,ai)

(r)− (λi − 1)Tf (r)
)

(10)

+
q + 2k − 2

2k

q∑
i=1

(
λiN

[k]
(g,ai)

(r)− (λi − 1)Tg(r)
)

≥ q + 2k − 2

2k

q∑
i=1

λiN
[k]
(f,ai)

(r) +
q + 2k − 2

2k

q∑
i=1

λiN
[k]
(g,ai)

(r)

− q + 2k − 2

2k

q∑
i=1

(λi − 1)T (r),

where T (r) = Tf (r) + Tg(r).

Further notice that max1≤i≤q
k

mi+1−k ≤
q

2n−k+1 − 1 implies (2n − k +

2) max1≤i≤q λi ≤
∑q
i=1 λi. By (10) and Theorem 1.1 with η =

∑q
i=1 λi

2n−k+2 and

γ(r) = e(min{cf ,cg}+ε)(Tf (r)+Tg(r)), we have

NP (r) ≥ q + 2k − 2

2k

(∑q
j=1 λj − (n− k)η

n+ 2

)
{T (r)− k(n+ 1) log γ(r)}(11)

− S(r)− 2ε log(rγ(r))− q + 2k − 2

2k

q∑
i=1

(λi − 1)T (r)

=
q + 2k − 2

2k
·
∑q
j=1 λj

2n− k + 2
{T (r)− k(n+ 1) log γ(r)}

− q + 2k − 2

2k

q∑
i=1

(λi − 1)T (r)− S(r)− 2ε log(rγ(r)).
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On the other hand, by the Jensen formula, we have

NP (r)(12)

=

∫
|z|=r

log |P (re
√
−1θ)|dθ +O(1)

=

q∑
i=1

∫
|z|=r

log
∣∣∣Pi(re√−1θ)∣∣∣ dθ +O(1)

≤
q∑
i=1

∫
|z|=r

log

(∣∣∣(f, ai) (re
√
−1θ)

∣∣∣2 +
∣∣∣(f, aσ(i)) (re

√
−1θ)

∣∣∣2)1/2

dθ

+

q∑
i=1

∫
|z|=r

log

(∣∣∣(g, ai) (re
√
−1θ)

∣∣∣2 +
∣∣∣(g, aσ(i)) (re

√
−1θ)

∣∣∣2)1/2

dθ

+O(1)

≤ q (Tf (r) + Tg(r)) + o (Tf (r) + Tg(r)) = qT (r) + o(T (r)).

Now we derived from (11) and (12) that

2kq

q + 2k − 2
T (r) + o(T (r)) ≤

∑q
j=1 λj

2n− k + 2
{T (r)− k(n+ 1) log γ(r)}

− S(r)−
q∑
i=1

(λi − 1)T (r)− 2ε log(rγ(r)).

Letting r → R−(r /∈ E) and letting ε→ 0+, we get

2kq

q + 2k − 2
≥

∑q
j=1 λj

2n− k + 2
(1− k(n+ 1) min {cf , cg})−

q∑
i=1

(λi − 1).

Note that q ≥ 2k(2n − k + 1) + 2 and
∑q
i=1

k
mi+1−k <

q(q−2k(2n−k+1)−2)
(q+2k−2)(2n−k+1) , we

get q(q−2)(2n−k+2)
(q+2k−2)

∑q
j=1 λj

− 2n+ k − 1 > 0, and therefore

min {cf , cg} ≥
1

k(n+ 1)

(
q(q − 2)(2n− k + 2)

(q + 2k − 2)
∑q
j=1 λj

− 2n+ k − 1

)
.

This is a contradiction. Then f = g. Hence, the theorem is proved. �
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