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EVALUATION FORMULA FOR WIENER INTEGRAL OF

POLYNOMIALS IN TERMS OF NATURAL DUAL PAIRINGS

ON ABSTRACT WIENER SPACES

Seung Jun Chang and Jae Gil Choi

Abstract. In this paper, we establish an evaluation formula to calculate
the Wiener integral of polynomials in terms of natural dual pairings on

abstract Wiener spaces (H,B, ν). To do this we first derive a translation

theorem for the Wiener integral of functionals associated with operators
in L(B), the Banach space of bounded linear operators from B to itself.

We then apply the translation theorem to establish an integration by parts
formula for the Wiener integral of functionals combined with operators in

L(B). We finally apply this parts formula to evaluate the Wiener integral

of certain polynomials in terms of natural dual pairings.

1. Introduction

Let H be a real infinite dimensional Hilbert space with inner product 〈·, ·〉
and associated norm | · |, and let B be a real separable Banach space with norm
‖ · ‖. It is assumed that H is continuously, linearly, and densely embedded in
B. The natural injection (i.e., embedding) is denoted by ι : H ↪→ B. Let ν
be a centered Gaussian probability measure on (B,B(B)), where B(B) is the
Borel σ-field of B. The triple (H,B, ν) is called an abstract Wiener space if∫

B

exp
[
i(h, x)

]
dν(x) = exp

[
− 1

2
|ι∗(h)|2

]
= exp

[
− 1

2
|h|2
]

for any h ∈ B∗, where (·, ·) denotes the natural dual pairing (B∗–B pairing)
and ι∗ : B∗ → H∗ is the dual map to the natural injection ι : H ↪→ B, and
where B∗ and H∗ are the topological duals of B and H, respectively. The
space B∗ is identified as a dense subspace of H∗ ≈ H in the sense that, for all
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y ∈ B∗ and x ∈ H,

(1.1) 〈y, x〉 = (y, x).

Thus we have the triple

(1.2) B∗ ⊂ H∗ ≈ H ⊂ B.

The Hilbert spaceH is called the Cameron–Martin space in the abstract Wiener
space B. For more details, see [8, 12,15].

Given a nonnegative integer m, let Mm(B∗) denote the set of all monomials
F , in terms of natural dual pairings on the abstract Wiener space (H,B, ν),
defined as follows:

F ∈ Mm(B∗) ⇐⇒F (x) = c(θ1, x)k1(θ2, x)k2 · · · (θm, x)km

for some c ∈ R, a finite subset {θ1, θ2, . . . , θm} of B∗,

and a finite subset {k1, k2, . . . , km} of {0} ∪ N.

Let M0 = R for notational convenience, let Σf (Mm) denote the class of all
linear combinations (with real coefficients) of the monomials in Mm, and let
P(B∗) = ∪∞m=0Σf (Mm). Then P(B∗) is the set of all conventional polynomials
in a finite number of linear functionals (natural dual pairings) on the abstract
Wiener space (H,B, ν), see, [1, pp. 43–45] and [25, p. 119]. It is well known
that P(B∗) is a dense subset of the space L2(B), the space of square-integrable
functionals on B, see [11, Chapter 1]. From this fact, many mathematicians
have studied the Wiener integral of the polynomials in P(B∗), the structures
of cylinder functionals (rather than L2-functionals) on Wiener spaces, and the
related topics. See, for instance, [9, 10,18,20,26].

Based on those historical background, we will study the Wiener integral of
the polynomials in terms of natural dual pairings on an abstract Wiener space
B. In this paper, we establish an evaluation formula to calculate the Wiener
integral of monomials in terms of natural dual pairings on B. To do this, we first
derive a translation theorem for the Wiener integral of functionals associated
with operators in L(B), the Banach space of bounded operators from B to
itself. We then apply the translation theorem to establish an integration by
parts formula for the Wiener integral of functionals combined with operators
in L(B). We finally apply this parts formula to evaluate the Wiener integral of
the monomials. Precisely speaking, we provide an evaluation formula for the
Winer integral of monomials given by

F (x) =
∏
α∈D

(A∗αg, x), x ∈ B,

where D is a finite index set and for each α ∈ D, A∗α is the Banach space dual
operator of the bounded operator Aα in L(B).
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2. Background

In order to present our evaluation formula for the Wiener integral, we follow
the exposition of [6,12,13,15]. Let (H,B, ν) be an abstract Wiener space, and
let {en} be a complete orthonormal set in H such that ej ’s are in B∗. For each
h ∈ H and x ∈ B, a stochastic inner product (h, x)∼ is defined by

(2.1) (h, x)∼ =

{
lim
n→∞

∑n
j=1〈h, ej〉(ej , x), if the limit exists,

0, otherwise.

By the definition of the stochastic inner product (·, ·)∼ and (1.1), it is clear
that (θ, x)∼ = (θ, x) for all θ ∈ B∗ and x ∈ B. It is well known [6,12,13,15,25]
that for every non-zero h in H, (h, x)∼ is a Gaussian random variable on B
with mean 0 and variance |h|2. The stochastic inner product (h, x)∼ given by
(2.1) is essentially independent of the choice of the complete orthonormal set
used in its definition. Also, if both h and x are in H, then Parseval’s identity
gives (h, x)∼ = 〈h, x〉. Furthermore, (h, λx)∼ = (λh, x)∼ = λ(h, x)∼ for any
λ ∈ R, h ∈ H and x ∈ B. We also see that if {h1, . . . , hn} is an orthogonal set
in H, then the random variables (hj , x)∼’s are independent.

By the concept of the Banach space adjoint operator, given an operator
A ∈ L(B), there exists a bounded linear operator A∗ : B∗ → B∗ such that for
all θ ∈ B∗ and x ∈ B,

(2.2) (A∗θ)x = θ(Ax).

By the structure of the dual pairing and the triple (1.2) (i.e., in the sense of
Riesz representation theorem), equation (2.2) can be rewritten by

(A∗θ, x) = (θ,Ax).

The Cameron–Martin translation theorem describes how abstract Wiener
measure changes under translation by certain elements of the Cameron–Martin
space H.

Theorem 2.1 ([14]). Let (H,B, ν) be an abstract Wiener space, let F ∈ L1(B)
and let x0 ∈ H. Then it follows that

(2.3)

∫
B

F (x)dν(x) = exp

[
− 1

2
|x0|2

] ∫
B

F (x+ x0) exp
[
− (x0, x)∼

]
dν(x).

From equation (2.3), one can obtain the following theorem. For a simple
proof, we refer the reader to [19].

Theorem 2.2. Let F and x0 be as in Theorem 2.1. Then it follows that

(2.4)

∫
B

F (x+ x0)dν(x) = exp

[
− 1

2
|x0|2

] ∫
B

F (x) exp
[
(x0, x)∼

]
dν(x).

We finish this section by stating the definition of the first variation associated
with bounded operators on B. This definition comes from the definition of the
first variation studied in [2, 5].
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Definition 2.3. Let F be a measurable functional on B and let w ∈ B. Then
given two bounded operators A1 and A2 in L(B),

(2.5) δA1,A2F (x|w) =
∂

∂µ
F (A1x+ µA2w)

∣∣∣∣
µ=0

(if it exists) is called the first variation of F associated with the operators A1

and A2.

Remark 2.4. (i) Setting A1 = A2 ≡ I (the identity operator) on B, our defini-
tion of the first variation reduces to the first variation studied in [2, 5, 23, 24].
That is,

δI,IF (x|w) = δF (x|w).

In this case δI,IF (x|w) acts like a directional derivative of F in the direction
of w.

(ii) Given any three operators A1, A2 and A3 in L(B) and θ ∈ B∗, one can
observe that

δA1,A2A3F (x|θ) = δA1,A2F (x|A3θ).

3. Preliminary results: Translation theorems
associated with bounded operators

The translation theorem was initiated by Cameron and Martin [4]. Notice
in equations (2.3) and (2.4) that the Radon–Nikodym derivatives involve two
contributions. Of these, the stochastic inner product (x0, x)∼ exactly corre-
sponds to the Paley–Wiener–Zygmund stochastic integral [21,22] in the original
Cameron–Martin theorems, see [4, Equation (1.3)] and [3, Equation (1.2)], and
the term − 1

2 |x0|
2 is the direct analog of the corresponding term in the original

theorems. Therefore, it is necessary to develop a better understanding of those
behavior. In this section, we develop the translation theorem to the abstract
Wiener integral associated with bounded operators.

Theorem 3.1. Let A1 and A2 be bounded operators in L(B) and let θ ∈ B∗.
Let F be a functional on B such that F (A1x) is ν-integrable over B. Then it
follows that

(3.1)

∫
B

F (A1x)dν(x)

= exp

[
− 1

2
|A∗2θ|2

] ∫
B

F (A1x+A1A
∗
2θ) exp

[
− (θ,A2x)

]
dν(x).
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Proof. Letting G(x) = F (A1x) and using equation (2.3) with F and x0 replaced
with G and A∗2θ, it follows that∫

B

F (A1x)dν(x)

=

∫
B

G(x)dν(x)

= exp

[
− 1

2
|A∗2θ|2

] ∫
B

G(x+A∗2θ) exp
[
− (A∗2θ, x)

]
dν(x)

= exp

[
− 1

2
|A∗2θ|2

] ∫
B

F (A1x+A1A
∗
2θ) exp

[
− (θ,A2x)

]
dν(x)

as desired. �

Remark 3.2. In the proof of [19, Lemma 1.4], equation (2.4) was derived by
equation (2.3). One can also verify equation (2.3) by use of (2.4). But equation
(3.2) below can not be derived by equation (3.1) with the techniques as those
used in the proof of [19, Lemma 1.4].

Theorem 3.3. Let A1, A2, θ, and F be as in Theorem 3.1. Then it follows
that

(3.2)

∫
B

F (A1x+A1A
∗
2θ)dν(x)

= exp

[
− 1

2
|A∗2θ|2

] ∫
B

F (A1x) exp
[
(θ,A2x)

]
dν(x).

Proof. Letting G(x) = F (A1x) and using equation (2.4) with F and x0 replaced
with G and A∗2θ, it follows that∫

B

F (A1x+A1A
∗
2θ)dν(x)

=

∫
B

G(x+A∗2θ)dν(x)

= exp

[
− 1

2
|A∗2θ|2

] ∫
B

G(x) exp
[
(A∗2θ, x)

]
dν(x)

= exp

[
− 1

2
|A∗2θ|2

] ∫
B

F (A1x) exp
[
(θ,A2x)

]
dν(x)

as desired. �

4. Integration by parts formula

In this section, we provide an integration by parts formula for the Wiener
integral associated with bounded operators on abstract Wiener spaces.
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Theorem 4.1. Let A1, A2, θ, and F be as in Theorem 3.1. Furthermore
assume that

(4.1)

∫
B

∣∣δA1,A1A∗
2
F (x|θ)

∣∣dν(x) < +∞.

Then it follows that

(4.2)

∫
B

δA1,A1A∗
2
F (x|θ)dν(x) =

∫
B

(θ,A2x)F (A1x)dν(x).

Proof. Using (2.5) and (3.2), it follows that

(4.3)

∫
B

δA1,A1A∗
2
F (x|θ)dν(x)

=

∫
B

∂

∂µ
F (A1x+ µA1A

∗
2θ)

∣∣∣∣
µ=0

dν(x)

=
∂

∂µ

(∫
B

F (A1x+ µA1A
∗
2θ)dν(x)

)∣∣∣∣
µ=0

=
∂

∂µ

(
exp

[
− µ2

2
|A∗2θ|2

] ∫
B

F (A1x) exp
[
µ(θ,A2x)

]
dν(x)

)∣∣∣∣
µ=0

=

∫
B

(θ,A2x)F (A1x)dν(x).

The second equality of (4.3) follows from (4.1) and Theorem 2.27 in [7]. �

Remark 4.2. Other study of integration by part formulas for various kind of
functionals on abstract Wiener spaces can be found in [16,17].

5. Evaluation formulas for the Wiener integral of monomials
in terms of natural dual pairings

In this section, as suggested in Section 1, we will provide evaluation formulas
for the Winer integral of monomials in terms of the natural dual pairings, given
by

(5.1) F (x) =
m∏
j=1

(A∗jg, x), x ∈ B,

where for each j ∈ {1, . . . ,m}, A∗j is the Banach space dual operator of the
bounded operator Aj in L(B).

When we evaluate the Wiener integral

(5.2)

∫
B

m∏
j=1

(A∗jg, x)dν(x),

we might not be able to use the change of variables theorem of the usual measure
theory, because the set of Gaussian random variables (A∗jg, x), j ∈ {1, . . . ,m},
is generally not independent.



WIENER INTEGRAL OF POLYNOMIALS ON ABSTRACT WIENER SPACES 1099

Throughout the remainder of this paper, we will present interesting formulas
to calculate the Wiener integral of functionals F given by (5.1). Using equation
(4.2), we indeed see that the Wiener integral of functionals having the form
(5.1) can be calculated very explicitly. We now show that the integration by
parts formula (namely, equation (4.2)) can be used to calculate the Wiener
integral (5.2).

Example 5.1. Let A1 and A2 be operators in L(B). Given a non-zero element
g in B∗, set F (x) = (g, x). Then using equation (2.5), it follows that for any θ
in B∗,

δA1,A1A∗
2
F (x|θ) =

∂

∂µ

{
(g,A1x) + µ(g,A1A

∗
2θ)
}∣∣∣∣
µ=0

= (g,A1A
∗
2θ)

= (A∗1g,A
∗
2θ).

In particular, we obtain that

(5.3) δA1,A1A∗
2
F (x|g) = (A∗1g,A

∗
2g).

Next applying equation (4.2) with F (x) = (g, x) and using equation (5.3),
we obtain the formula

(5.4)

∫
B

(g,A1x)(g,A2x)dν(x) =

∫
B

(g,A2x)F (A1x)dν(x)

=

∫
B

δA1,A1A∗
2
F (x|θ)dν(x) = (A∗1g,A

∗
2g).

Remark 5.2. Frankly speaking, calculating the covariance of the two random
variables (A∗1g, x) and (A∗2g, x) (or, calculating the variance of the random
variable (A∗1g+A∗2g, x), merely), one can obtain the Wiener integration formula
(5.4). But to calculate the Wiener integral∫

B

m∏
j=1

(A∗jg, x)dν(x) =

∫
B

m∏
j=1

(g,Ajx)dν(x) with m ≥ 3,

we may apply the Gram–Schmidt process to the subset {A∗1g, . . . , A∗ng} of B∗

and use a well-known Wiener integration theorem (see, [19, Equation (1.3)]),
if the set {A∗1g, . . . , A∗ng} is not orthogonal in H.

In our next example, for any positive integer m ∈ {3, 4, . . .}, we obtain a
recurrence relation for the Wiener integral of the monomials

∏m
j=1(A∗jg, x) of

the natural dual pairings. To do this, we just apply equation (4.2).

Example 5.3. Let m ≥ 3 be a positive integer and let g be a non-zero element
in B∗. Let {A1, . . . , Am−1, Am} be a finite sequence of operators in L(B). Set

F (x) =

m−1∏
j=1

(A∗jg, x) =

m−1∏
j=1

(g,Ajx).
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First, using equation (2.5), it follows that for all θ ∈ B∗,

(5.5)

δI,A∗
m
F (x|θ) =

∂

∂µ

m−1∏
j=1

{
(A∗jg, x) + µ(A∗jg,A

∗
mθ)

}∣∣∣∣
µ=0

=

m−1∑
l=1

m−1∏
j=1
j 6=l

(A∗jg, x)(A∗l g,A
∗
mθ)

=

m−1∑
l=1

(A∗l g,A
∗
mθ)

m−1∏
j=1
j 6=l

(A∗jg, x),

where I denotes the identity operator on B. Then in particular, replacing θ
with g in (5.5), it follows that

(5.6) δI,A∗
m
F (x|g) =

m−1∑
l=1

(A∗l g,A
∗
mg)

m−1∏
j=1
j 6=l

(A∗jg, x).

Hence, using equation (4.2) with F (x) =
∏m−1
j=1 (A∗jg, x) =

∏m−1
j=1 (g,Ajx) and

applying equation (5.6), we obtain the formula

(5.7)

wm ≡
∫
B

(g,Amx)

m−1∏
j=1

(g,Ajx)dν(x)

=

∫
B

(g,Amx)F (Ix)dν(x)

=

∫
B

δI,IA∗
m
F (x|g)dν(x)

=

∫
B

δI,A∗
m
F (x|g)dν(x)

=

m−1∑
l=1

(A∗l g,A
∗
mg)

∫
B

m−1∏
j=1
j 6=l

(A∗jg, x)dν(x).

Letting m = 3 in equation (5.7) and applying equation (5.4) allow us to
easily and completely evaluate the Wiener integral

w3 ≡
∫
B

(A∗1g, x)(A∗2g, x)(A∗3g, x)dν(x).

Then setting m = 4 in equation (5.7) allows us to completely evaluate the
Wiener integral

w4 ≡
∫
B

(A∗1g, x)(A∗2g, x)(A∗3g, x)(A∗4g, x)dν(x),
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since we already have complete evaluation formulas for∫
B

l∏
j=1

(A∗jg, x)dν(x), l = 1, 2 and 3.

Then we can evaluate

w5 ≡
∫
B

5∏
j=1

(A∗jg, x)dν(x),

since we have already evaluated∫
B

l∏
j=1

(A∗jg, x)dν(x)

for l = 1, 2, 3 and 4; etc.
Using those calculations, it follows w3 = w5 = 0 and

w4 = (A∗1g,A
∗
4g)(A∗2g,A

∗
3g) + (A∗2g,A

∗
4g)(A∗1g,A

∗
3g) + (A∗3g,A

∗
4g)(A∗1g,A

∗
2g).

Remark 5.4. (i) Applying equations (5.7) and (5.4) and the linearity of the
Wiener integral, we can calculate the Wiener integral of the polynomials P
having the form

(5.8) P (x) =
∑
S∈F

cS
∏
A∈S

(A∗g, x) + c0,

where F is any finite family of finite sequences S of L(B), cS ∈ C for each
S ∈ F, and c0 ∈ C. The polynomials P having the form (5.8) are in the class
P(B∗), see Section 1 above.

(ii) Using the recursive formula (5.7) and a tedious calculation, we conclude
that ∫

B

m∏
j=1

(A∗jg, x)dν(x) =

{
0, if m is odd,∑∏
k(A∗ikg,A

∗
jk
g), if m is even,

where the sum is over all partitions of {1, 2, . . . ,m} into disjoint pairs {ik, jk}.
This result subsumes Wick’s theorem (see [11, Theorem 1.28]) in quantum field
theory.

Acknowledgment. The authors would like to express their gratitude to the
editor and the referees for their valuable comments and suggestions which have
improved the original paper.
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