DOI QR코드

DOI QR Code

휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN

  • 카칸 발루치 (서울 과학기술대학교 건설시스템공학과) ;
  • 신찬휘 (전북대학교 공과대학 에너지 저장/변환 공학 대학원) ;
  • 조용돈 ((주) 동방티씨에스) ;
  • 조상호 (전북대학교 공과대학 에너지 저장/변환 공학 대학원)
  • 투고 : 2022.09.05
  • 심사 : 2022.09.27
  • 발행 : 2022.09.30

초록

수소는 다른 연료에 비해 에너지효율이 높고 유해물질이 배출되지 않아 미래의 청정에너지원으로 인식되고 있다. 그러나 수소는 밀도가 낮아 운반 및 저장시에 부피가 커서 압축하거나 특별한 운반체를 사용해야 하며, 공기중에 노출 시 화재나 폭발의 위험성이 있다. 수소-공기 혼합물의 폭발에 관한 실험이나 수치해석적 연구가 진행되어 오고 실물 수소 충전소를 대상으로 한 폭발 시뮬레이션에 관한 연구사례는 극히 드물다. 본 연구에서는 실제 수소 충전소를 대상으로 Lidar 스캐닝을 수행하여 point cloud 데이터를 획득하고 수소 충전소 3 차원 구조 모델을 작성한다. 3 차원 구조모델은 Ansys 사 AUTODYN 에 적용되어 수소 충전소의 수소폭발을 가정한 TNT 등가량의 폭발 시뮬레이션을 실시하고 주변에 전파하는 폭발압력을 계산하여, 수소 충전소 폭발에의한 주변 보안 건물의 안전거리에 관한 정보를 제공한다.

Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

키워드

과제정보

This research was supported by a grant(22CTAP-C163414-02) from Technology promotion research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

참고문헌

  1. A. Marangon et.al., 2007, Safety distances: definition and values, International Journal of Hydrogen Energy, ISSN 0360-3199, Vol. 32, pp. 2192-2197. https://doi.org/10.1016/j.ijhydene.2007.04.007
  2. Ettner, F., Vollmer, K. G., Sattelmayer, T., 2014, Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures, Journal of Combustion, pp.1-15.9
  3. Kuznetsov, M., Grune, J., Friedrich, A., and Jordan, T., 2011, Combustion Regimes in a Stratified Layer of Hydrogen-air Mixture, Proceedings of the International Congress on Advances in Nuclear Power Plants (ICAPP), Nice, France.
  4. Lee, JHS., 2008, The detonation phenomenon. Cambridge University Press.
  5. Groethe E, Merilo J, Colton S, Chiba Y, Sato H, Iwabuchi., 2007, Large scale hydrogen deflagrations and detonations. International Journal of Hydrogen Energy.
  6. Kotchourko., 2007, Safety of hydrogen as an energy carrier, compilation report on SBEPs results of the 4th period: HYSAFE.
  7. Zhu YJ, Chao J, Lee JHS., 2007, An experimental investigation of the propagation mechanism of critical deflagration waves that lead to the onset of detonation. Proceedings of the Combustion Institute, Vol. 31, pp. 2455-62. https://doi.org/10.1016/j.proci.2006.07.209
  8. Tremblay B, Gavilanes JM, Bauwens L., 2009, Detonation structure under chain-branching kinetics with small initiation rate. Proceeding of Combustion Institute.
  9. Vaagsaether K, Knudsen V, Bjerketvedt D., 2007, Simulation of flame acceleration and DDT in H2-air mixture with flux limiter centred method. International Journal of Hydrogen Energy.
  10. Khokhlov Alexei M, Oran Elaine S., 1999, Numerical simulation of detonation initiation in a flame brush: the role of hot spots. Combustion and Flame December, Vol. 119, pp.400-16. https://doi.org/10.1016/S0010-2180(99)00058-9
  11. Tosatto L, Vigevano L., 2008, Numerical solution of under-resolved detonations. Journal of Computational Physics.
  12. Lee JHS, Moen I., 1980, The mechanism of transition from deflagration to detonation in vapour cloud explosions. Progress in Energy and Combustion Sciences, Vol. 6, pp.359-89. https://doi.org/10.1016/0360-1285(80)90011-8
  13. Education and culture Leonardo da Vinci, 2008, Theory and Practice on Terrestrial Laser Scanning, pp. 241.
  14. Berger. S., 2011, Etude de la modelisation d'une reduced model 3D et del'integration de donnees, pp. 84.
  15. Landes. T., 2008, Confrontation de la lasergrammetrie aux techniques dereleve conventionnelles et developpement d'outils numeriques pour larestitution architecturale, pp. 6.
  16. W. Boehler, 2003, Investigating Laser Scanner Accuracy, pp. 19.
  17. Y. J. Hyun, 2011, Analyse et conception de scanners laser mobiles dedies a lacartographie 3D d'environnements urbains, pp. 132.
  18. LiDAR magazine, 2019
  19. Features and Technical Specifications for PX-80, 2020
  20. Gusmao, G.F.; Barbosa, C.R.H.; Raposo, A.B., 2020, Development and Validation of LiDAR Sensor Simulators Based on Parallel Raycasting. Sensors, Vol. 20, pp. 7186 https://doi.org/10.3390/s20247186
  21. Gusmao, G.F., 2014, Development and Validation of a LiDAR Virtual Sensor.
  22. Stalmach, Ondrej, et al., 2019, "Conversion of data from the laser scanner to the Ansys Workbench." MATEC Web of Conferences. Vol. 254. EDP Sciences.
  23. Xu W, Neumann I., 2020, Finite Element Analysis based on A Parametric Model by Approximating Point Clouds. Remote Sensing, Vol. 12, pp. 518. https://doi.org/10.3390/rs12030518
  24. Kim, Minju, and Sangki Kwon., 2020, "Calculation of the TNT Equivalent Mass of the Possible Explosion of CO, CH4, and C2H4." Explosives and Blasting, Vol. 38, no. 1.
  25. Fukuda, K., 2004, Production of exergy from labour and energy resources: Applied Energy, 2004, 76, (4), 435-448, Fuel and Energy Abstracts, Vol. 45, Issue 3, pp. 228
  26. Ivanco, Matus, Romana Erdelyiova, and Lucia Figuli., 2019, "Simulation of detonation and blast waves propagation." Transportation Research Procedia, Vol. 40, pp. 1356-1363 https://doi.org/10.1016/j.trpro.2019.07.188
  27. Daniel A. Crowl, Joseph F. Louvar., 2001, Chemical Process Safety: Fundamentals With Applications 2nd Edition.
  28. Swisdak, M.M., Jr., 1994, Simplified Kingery Airblast Calculations; NAVAL SURFACE WARFARE CENTER INDIAN HEAD DIV MD: Indian Head, MD, USA.
  29. KOSHA Guide P-102-2013,Technical guide on accident damage prediction techniques", Korea Occupational Safety and Health Agency.