DOI QR코드

DOI QR Code

Optimization of Protoplast Isolation and Ribonucleoprotein/Nanoparticle Complex Formation in Lentinula edodes

표고버섯의 원형질체 분리 최적화와 RNPs/나노파티클 복합체 형성

  • Kim, Minseek (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Ryu, Hojin (Department of Biology, Chungbuk National University) ;
  • Oh, Min Ji (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Im, Ji-Hoon (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Lee, Jong-Won (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Oh, Youn-Lee (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA)
  • 김민식 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 류호진 (충청북도 청주시 충북대학교 자연대학) ;
  • 오민지 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 임지훈 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 이종원 (농촌진흥청 국립원예특작과학원 버섯과) ;
  • 오연이 (농촌진흥청 국립원예특작과학원 버섯과)
  • Received : 2022.08.31
  • Accepted : 2022.09.23
  • Published : 2022.09.30

Abstract

Despite the long history of mushroom use, studies examining the genetic function of mushrooms and the development of new varieties via bio-molecular methods are significantly lacking compared to those examining other organisms. However, owing to recent developments, attempts have been made to use a novel gene-editing technique involving CRISPR/Cas9 technology and genetic scissors in mushroom studies. In particular, research is actively being conducted to utilize ribonucleoprotein particles (RNPs) that can be genetically edited with high efficiency without foreign gene insertion for ease of selection. However, RNPs are too large for Cas9 protein to pass through the cell membrane of the protoplasmic reticulum. Furthermore, guide RNA is unstable and can be easily decomposed, which remarkably affects gene editing efficiency. In this study, nanoparticles were used to mitigate the shortcomings of RNP-based gene editing techniques and to obtain transformants stably. We used Lentinula edodes (shiitake mushroom) Sanjo705-13 monokaryon strain, which has been successfully used in previous genome editing experiments. To identify a suitable osmotic buffer for the isolation of protoplast, 0.6 M and 1.2 M sucrose, mannitol, sorbitol, and KCl were treated, respectively. In addition, with various nanoparticle-forming materials, experiments were conducted to confirm genome editing efficiency via the formation of nanoparticles with calcium phosphate (CaP), which can be bound to Cas9 protein without any additional amino acid modification. RNPs/NP complex was successfully formed and protected nuclease activity with nucleotide sequence specificity.

버섯의 오랜 역사에도 불구하고 버섯의 유전적 기능과 분자유전학을 응용한 신품종 개발에 대한 연구는 크게 부족한 상황이다. 그러나 최근 유전자 가위인 CRISPR/Cas를 이용한 새로운 유전자 교정 기술이 개발됨에 따라 버섯 연구에서 이 기술을 이용한 다양한 시도가 이루어지고 있다. 특히 선택의 용이성을 위해 외래 유전자 삽입 없이도 고효율로 유전자 편집이 가능한 RNPs를 활용한 연구가 활발히 진행되고 있다. 그러나 RNPs는 원형질체의 세포막을 통과하기에 Cas9이 너무 거대하고 guide RNA가 쉽게 파괴된다는 단점을 가지고 있다. 이러한 단점을 극복하기 위하여 세포막 통과에 용이한 미네랄 성분인 CaP와 PAA를 조합하여 Nanoparticle을 형성함으로써 극복하고자 했다. 표고버섯 단핵 균주인 산조705-13을 이용하여 원형질체 분리에 적합한 Osmotic buffer를 찾기 위하여 0.6M과 1.2M의 Sucrose, Sorbitol, Mannitol, KCl을 처리하였고 그 결과 0.6M Sucrose가 가장 적합한 osmotic buffer임을 확인하였다. 또한 CaP으로 RNPs와 Nanoparticle 복합체를 형성하고 이 복합체가 RNase A로부터 RNPs의 기능을 온전히 보호하는 것을 확인할 수 있었다.

Keywords

Acknowledgement

본 결과물은 농촌진흥청 고유연구사업 원예특작시험연구 '유전자 교정 기술 활용 산업용 버섯 육종소재 개발(PJ01697601)' 주관 과제의 예산을 지원받았습니다.

References

  1. Hong L. 2015. Structural principles of CRISPR RNA processing. Structure 23: 13-20. https://doi.org/10.1016/j.str.2014.10.006
  2. Li SJ, Song ZY, Liu C, Chen XL, Han HY. 2019. Biomimetic mineralization-based CRISPR/Cas9 ribonucleoprotein nanoparticles for gene editing. ACS Appl Mater Interfaces 11: 47762-47770. https://doi.org/10.1021/acsami.9b17598
  3. Lino CA, Harper JC, Carney JP, Timlin JA. 2018. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 25: 1234-1257. https://doi.org/10.1080/10717544.2018.1474964
  4. MAFRA. 2020. Ministry of Agriculture, Food and Rural Affairs 2019. 64-67.
  5. Mariana S, Regine K. 2019. CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet Biol. 130: 43-53. https://doi.org/10.1016/j.fgb.2019.04.016
  6. Moon SY, An JY, Choi YJ, Oh YL, Ro HS, Ryu H. 2021. Construction of a CRISPR/Cas9-mediated genome editing system in Lentinula edodes. Mycobiology 49: 599-603. https://doi.org/10.1080/12298093.2021.2006401
  7. Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. 2006. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 5: 1021-1029. https://doi.org/10.1016/j.dnarep.2006.05.022
  8. Zou G, Xiao M, Chai S, Zhu Z, Wang Y, Zhou Z. 2021. Efficient genome editing in filamentous fungi via an improved CRISPR-Cas9 ribonucleoprotein method facilitated by chemical reagents. Microb Biotechnol 14: 2343-2355. https://doi.org/10.1111/1751-7915.13652