References
- Beasley TM, Erickson S, and Allison DB (2009). Rank-based inverse normal transformations are increasingly used, but are they merited?, Behavior Genetics, 39, 580-595. https://doi.org/10.1007/s10519-009-9281-0
- Box GE and Cox DR (1964). An analysis of transformations, Journal of the Royal Statistical Society: Series B (Methodological), 26, 211-243. https://doi.org/10.1111/j.2517-6161.1964.tb00553.x
- Cook RD(1998). Principal hessian directions revisited, Journal of the American Statistical Association, 93, 84-94. https://doi.org/10.1080/01621459.1998.10474090
- Cook RD and Weisberg S (1991). Discussion of "Sliced inverse regression for dimension reduction", Journal of the American Statistical Association, 86, 28-33.
- Lapin M, Hein M, and Schiele B (2016). Loss functions for top-k error: Analysis and insights, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1468-1477.
- Li B (2018). Sufficient Dimension Reduction: Methods and Applications with R, CRC Press, Florida.
- Li B, Artemiou A, and Li L (2011). Principal support vector machines for linear and nonlinear sufficient dimension reduction, The Annals of Statistics, 39, 3182-3210. https://doi.org/10.1214/11-AOS932
- Li B and Wang S (2007). On directional regression for dimension reduction, Journal of the American Statistical Association, 102, 997-1008. https://doi.org/10.1198/016214507000000536
- Li KC (1991). Sliced inverse regression for dimension reduction (with discussion), Journal of the American Statistical Association, 86, 316-342. https://doi.org/10.1080/01621459.1991.10475035
- Liu Y, Zhang HH, and Wu Y (2011). Hard or soft classification? large-margin unified machines, Journal of the American Statistical Association, 106, 166-177. https://doi.org/10.1198/jasa.2011.tm10319
- Shin SJ, Wu Y, Zhang HH, and Liu Y (2014). Probability enhanced sufficient dimension reduction in binary classification, Biometrics, 70, 546-555. https://doi.org/10.1111/biom.12174
- Shin SJ, Wu Y, Zhang HH, and Liu Y (2017). Principal weighted support vector machines for sufficient dimension reduction in binary classification, Biometrika, 104, 67-81. https://doi.org/10.1093/biomet/asw057
- Vapnik V (1996). The Nature of Statistical Learning Theory, Cambridge University Press, Cambridge.
- Yeo IK and Johnson RA (2000) . A new family of power transformations to improve normality or symmetry, Biometrika, 87, 954-959. https://doi.org/10.1093/biomet/87.4.954
- Yin X, Li B, and Cook RD (2008). Successive direction extraction for estimating the central subspace in a multiple-index regression, Journal of Multivariate Analysis, 99, 1733-1757. https://doi.org/10.1016/j.jmva.2008.01.006
- Zhu LP, Zhu LX, and Feng ZH (2010). Dimension reduction in regressions through cumulative slicing estimation, Journal of the American Statistical Association, 105, 1455-1466. https://doi.org/10.1198/jasa.2010.tm09666