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Abstract
In this paper, the use of Bayes factors and the deviance information criterion for model selection are compared

in a Bayesian accelerated life testing setup. In Bayesian accelerated life testing, the most used tool for model
comparison is the deviance information criterion. An alternative and more formal approach is to use Bayes fac-
tors to compare models. However, Bayesian accelerated life testing models with more than one stressor often
have mathematically intractable posterior distributions and Markov chain Monte Carlo methods are employed to
obtain posterior samples to base inference on. The computation of the marginal likelihood is challenging when
working with such complex models. In this paper, methods for approximating the marginal likelihood and the ap-
plication thereof in the accelerated life testing paradigm are explored for dual-stress models. A simulation study
is also included, where Bayes factors using the different approximation methods and the deviance information
are compared.

Keywords: accelerated life testing, Bayes factors, generalized Eyring model, Markov chain Monte
Carlo, model comparison

1. Introduction

Bayesian model selection is an important aspect of any Bayesian analysis and aids the researcher in
determining which of the proposed models should be used. Various approaches towards Bayesian
model selection are discussed in Kadane and Lazar (2004). The different perspectives to model se-
lection discussed include Bayes factors, Bayesian model averaging, methods used for Bayesian linear
models, and predictive methods. The authors also state that model selection tools should rather be
used to identify inappropriate models, instead of attempting so select a single best model.

Bayesian accelerated life testing (ALT) models with more than one stressor often have mathe-
matically intractable posterior distributions and Markov chain Monte Carlo (MCMC) methods are
employed to obtain posterior samples to base inference on. For this reason, and the fact that it is a
standard output in many Bayesian data analysis software packages, the deviance information criterion
(DIC) is a very popular tool for model comparison. It can be argued that the more formal and tradi-
tional approach for Bayesian model selection would be the use of Bayes factors (Spiegelhalter et al.,
2002; Upadhyay and Mukherjee, 2010).

The authors in Spiegelhalter et al. (2002) explain that the DIC is intended as an alternative to
Bayes factors and that there are situations where the DIC may be a more appropriate tool for model
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comparison. Bayes factors are most suited when the complete set of possible models can be specified
and the true model is included in this set, whereas the DIC does not have this requirement (Bernardo
and Smith, 1994; Spiegelhalter et al., 2002). In a discussion on the DIC, the authors state that Bayes
factors and the DIC are intended for different purposes, and can thus lead to different conclusions
regarding model selection. Bayes factors consider how well the prior predicts the observed data,
whereas the DIC considers how well the posterior will predict future data by means of the same
mechanism that resulted in the observed data (Spiegelhalter et al., 2002).

In this paper, model selection in the Bayesian ALT setup is considered by comparing a generalized
Eyring-Weibull (GEW) model and a generalized Eyring-Birnbaum-Saunders (GEBS) model via the
DIC and Bayes factors. Due to the mathematically intractable posterior distributions of these models,
the computation of the marginal likelihood, needed for the calculation of the Bayes factor, is also
complicated. Methods for approximating the marginal likelihood, without further complicating the
MCMC sampling process, are discussed. The methods considered include a simple Monte Carlo
estimator (SMCE), the harmonic mean estimator (HME), the Laplace-Metropolis estimator (LME),
and a posterior predictive density estimator (PPDE) for posterior Bayes factors.

2. Bayesian model selection

2.1. Deviance information criterion

The DIC, proposed by Spiegelhalter et al. (2002), is a widely used measure for Bayesian model
comparison. It is used to assess both the goodness-of-fit and the complexity of the model. The model
with a significantly lower DIC value will usually be the preferred model to use, but there are other
considerations as well. The authors state that there is no specific rule of thumb on what constitutes a
significant difference in DIC, but that guidelines proposed by Burnham and Anderson (1998) on the
Akaike information criterion (AIC) also seem to work well for the DIC.

The formulation of the DIC follows on the work of Akaike (1973) and is based on using the
posterior mean deviance as a measure of fit, and a new complexity measure called the effective number
of parameters. For a parameter vector θ, with likelihood function L(x|θ), the deviance can be defined
as

D (θ) = −2 ln
[
L
(
x |θ

)]
.

The DIC can then be calculated as

DIC = D + pD,

where D is the posterior mean of the deviance and pD is the effective number of parameters given
by pD = D − D̂(θ), where D̂(θ) is a point estimate for the deviance. It is shown in Spiegelhalter
et al. (2002) that the DIC is approximately equivalent to the AIC for models with very weak prior
information.

The DIC is a very popular choice for model comparison in the Bayesian ALT setup, particularly
when working with complicated models where MCMC methods are used to obtain posterior samples
for inference (see, for example, Barriga et al., 2008; Soyer et al., 2008; Upadhyay and Mukherjee,
2010). The reason for this is that the DIC can easily be obtained from the MCMC output (see Spiegel-
halter et al., 2002), and it is also provided as a standard output in some well-known Bayesian data
analysis software such as WinBUGS/OpenBUGS and JAGS.



Bayes factors for ALT 515

2.2. Bayes factors

The foundation for Bayesian hypothesis testing via Bayes factors was developed by Jeffreys (1961).
The author referred to his methods as “significance tests” and presented them as an alternative to p-
values. The approach compares predictions made by two competing scientific theories by defining
statistical models for each theory and calculating the posterior probability that one of the theories is
correct (Kass and Raftery, 1995).

Denote by f (mi|x) and f (m j|x) the posterior model probabilities for models mi and m j, respec-
tively. The comparison of two models mi and m j, in the Bayesian setup, is conducted by means of the
posterior odds for model mi against model m j. This is given by

POi j =
f
(
mi

∣∣∣x )
f
(
m j

∣∣∣x ) =
f
(
x |mi

)
f
(
x
∣∣∣m j

) × f (mi)

f
(
m j

) = Bi j ×
f (mi)

f
(
m j

) ,
where f (x|mg), g = i, j are the marginal likelihoods and f (mg), g = i, j are the prior model probabili-
ties of the two models. The above expression is often summarized as

Posterior odds = Bayes factor × Prior odds.

In most situations no prior information will be available regarding the model structure, in which
case the prior model probabilities are set equal (see, for example, Ntzoufras, 2009). This results in
using the Bayes factor for hypothesis testing, which is also extended to model selection. It is important
to note that Bayes factors can be used to evaluate evidence against the null hypothesis or in favour of
the null hypothesis, which is not possible in classical hypothesis testing.

The Bayes factor Bi j of model mi versus model m j is defined as the ratio of the marginal likelihoods
f (x|mi) and f (x|m j). This can be written as

Bi j =
f
(
x |mi

)
f
(
x
∣∣∣m j

) =

∫
f
(
x
∣∣∣θmi ,mi

)
f
(
θmi |mi

)
dθmi∫

f
(
x
∣∣∣θm j ,m j

)
f
(
θm j

∣∣∣m j

)
dθm j

, (2.1)

where f (x|θmg ,mg), g = i, j is the likelihood of model mg with parameter vector θmg , and f (θmg |mg),
g = i, j is the prior imposed on θmg under model mg.

Interpreting Bayes factors in half-units on the log10-scale is suggested in Jeffreys (1961), where
the author provides a table for interpreting Bayes factor values. Kass and Raftery (1995) suggest
a modified version of these interpretations by rather considering twice the natural logarithm of the
Bayes factor. By doing this, Bayes factors are interpreted on the same scale as the likelihood ratio
test statistic. The interpretation of Bayes factors suggested in Kass and Raftery (1995) are used in this
paper.

In some cases, the marginal likelihoods in (2.1) can be computed analytically (see, for example,
DeGroot, 1970; Zellner, 1971). More often than not, the marginal likelihood must be estimated.
Ntzoufras (2009) explains that numerous other versions of Bayes factors as well as alternative model
selection approaches have also been developed. Other popular types of Bayes factors include pseudo
Bayes factors, resulting from the work of Geisser and Eddy (1979), posterior Bayes factors, presented
in Aitkin (1991), fractional Bayes factors, introduced in O’Hagan (1995), and intrinsic Bayes factors,
presented in Berger and Pericchi (1996).

Suppose we compare two models, mi and m j, where the prior model probabilities are denoted by
f (mg), g = i, j. From Bayes’ theorem we then have that the posterior model probability for model mi
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can be written as

f
(
mi

∣∣∣x )
=

f
(
x |mi

)
f (mi)

f
(
x |mi

)
f (mi) + f

(
x
∣∣∣m j

)
f
(
m j

)
=

f (mi)
∫

f
(
x
∣∣∣θmi ,mi

)
f
(
θmi |mi

)
dθmi

f (mi)
∫

f
(
x
∣∣∣θmi ,mi

)
f
(
θmi |mi

)
dθmi +

[
1 − f (mi)

] ∫
f
(
x
∣∣∣θm j ,m j

)
f
(
θm j

∣∣∣m j

)
dθm j

,

where f (x|mg), g = i, j is the marginal likelihoods, f (x|θmg ,mg), g = i, j denotes the likelihood of
model mg with parameter vector θmg , and f (θmg |mg), g = i, j is the prior imposed on θmg under model
mg. The posterior model probability for model mi can easily be computed by re-writing it in terms of
Bayes factors as

f
(
mi

∣∣∣x )
=

[
1 +

1 − f (mi)
f (mi)

B−1
i j

]−1

,

where Bi j is the Bayes factor of model mi versus model m j.

3. Estimating the marginal likelihood

There are various methods that can be used to estimate the marginal likelihood. In this section, we
focus on methods that can easily estimate Bayes factors from the output of an MCMC algorithm.
These methods include the SMCE, LME, HME, and PPDE which is used to estimate the posterior
Bayes factors.

3.1. Simple Monte Carlo estimator

Since the marginal likelihood for a model mi is given by

f
(
x |mi

)
=

∫
f
(
x
∣∣∣θmi ,mi

)
f
(
θmi |mi

)
dθmi ,

a straightforward and simple estimate is provided by the Monte Carlo integration estimate

f̂MC

(
x |mi

)
=

1
N

N∑
t=1

f
(
x
∣∣∣θ∗(t)mi

,mi

)
,

where θ∗(1)
mi , θ

∗(2)
mi , . . . , θ

∗(N)
mi are samples from the prior distribution of model mi. According to Kass

and Raftery (1995) this estimator can be very inefficient, particularly when the prior distribution and
posterior distribution significantly differ. An example of where a considerable difference in the prior
and posterior distributions can be expected, is when a flat prior is used (Ntzoufras, 2009). In such a
case, very small likelihood values will be produced for most of the samples θ∗(t)mi and the estimate will
be dominated by only a few large likelihood values.

3.2. Laplace-Metropolis estimator

A widely used approximation for the marginal likelihood is the Laplace approximation. This is given
by

f
(
x |mi

)
≈ (2π)

dmi
2

∣∣∣Σ̃mi

∣∣∣ 1
2 f

(
x
∣∣∣θ̃mi ,mi

)
f
(
θ̃mi |mi

)
,
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where dmi is the number of parameters for model mi, θ̃mi is the posterior mode of the parameters
for model mi, and Σ̃mi = [−Hm(θ̃mi )]

−1. Hm(θ̃mi ) is the Hessian matrix of second derivatives for the
log of the posterior density, ln[ f (θmi |x,mi)], evaluated at the posterior mode θ̃mi . Kass and Raftery
(1995) state that the Laplace approximation works well for symmetric likelihood functions and for a
parameter vector of moderate dimensionality.

Raftery (1996) and Lewis and Raftery (1997) propose an extension of the Laplace approxima-
tion, called the LME, which avoids the analytical calculation of Σ̃mi and θ̃mi . The posterior mean
and variance-covariance matrix of the posterior sample θ(1)

mi , θ
(2)
mi , . . . , θ

(N)
mi , generated from an MCMC

algorithm, are used to estimate θ̃mi and Σ̃mi , respectively. The LME is given by

f̂LM

(
x |mi

)
= (2π)

dmi
2

∣∣∣Smi

∣∣∣ 1
2 f

(
x
∣∣∣θmi ,mi

)
f
(
θmi |mi

)
,

where θmi = 1/N
∑N

t=1 θ
(t)
mi and Smi is a weighted variance matrix estimate (see, Lewis and Raftery,

1997, for further details).
Ntzoufras (2009) explains how the LME can be calculated from MCMC output in OpenBUGS as

follows:

1. Implement the model mi in OpenBUGS and produce posterior samples for the parameters of in-
terest via an MCMC algorithm.

2. From the MCMC samples calculate the following estimates:

• θmi = (θ1, θ2, . . . , θdmi
), which are the posterior means of the parameters of interest.

• sθmi
= (sθ1 , sθ2 , . . . , sθdmi

), which are the posterior standard deviations of the parameters of inter-
est.

• Rθmi
, which is the posterior correlation matrix between the parameters of interest.

3. Calculate the expression

ln f̂LM

(
x |mi

)
=

1
2

dmi ln (2π) +
1
2

ln
∣∣∣Rθmi

∣∣∣ +

dmi∑
l=1

ln sθl +

n∑
k=1

ln f
(
xk

∣∣∣θmi ,mi

)
+ ln f

(
θmi |mi

)
and simply take eln f̂LM(x|mi ) to get the LME for the marginal likelihood.

3.3. Harmonic mean estimator

The HME for the marginal likelihood, introduced in Newton and Raftery (1994), is given by

f̂HM

(
x |mi

)
=

 1
N

N∑
t=1

(
f
(
x
∣∣∣θ(t)

mi
,mi

))−1
−1

,

where θ(1)
mi , θ

(2)
mi , . . . , θ

(N)
mi are posterior samples generated by an MCMC method or other sampling

technique. According to Newton and Raftery (1994), f̂HM(x|mi) converges almost surely to f (x|mi),
but the HME does not, in general, satisfy a Gaussian central limit theorem. This estimator is shown to
be unstable and sensitive to small likelihood values, in Raftery (1996) and Raftery et al. (2007), but it
is simple to calculate. The HME is simulation-consistent and unbiased, but can have infinite variance
resulting in unstable behaviour.
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A generalized HME, which is an unbiased, consistent and more stable estimator for the marginal
likelihood, is presented in Gelfand and Dey (1994). This estimator, however, requires the specification
of an importance density, which must be carefully chosen and be relatively close to the posterior.
Raftery et al. (2007) present two more methods for stabilizing the HME, and improvements on the
HME via Lebesgue integration is presented in Weinberg (2012).

3.4. Posterior predictive density estimator

A variation on the traditional Bayes factor is the posterior Bayes factor, introduced in Aitkin (1991).
The posterior Bayes factor of model mi versus model m j is based on the ratio of the posterior predictive
densities of these models, for the observed data, and is given by

Bi j =
f
(
x
∣∣∣x,mi

)
f
(
x
∣∣∣x,m j

) ,
where f (x|x,mg), g = i, j, is the posterior predictive density of model mg, evaluated at the observed
data. The posterior predictive density can be easily estimated by the posterior mean of the likelihood
for the posterior samples obtained from an MCMC algorithm (Ntzoufras, 2009). The PPDE is given
by

f̂PPD

(
x
∣∣∣x,mi

)
=

1
N

N∑
t=1

f
(
x
∣∣∣θ(t)

mi
,mi

)
,

where θ(1)
mi , θ

(2)
mi , . . . , θ

(N)
mi are posterior samples for the model parameters.

The use of posterior Bayes factors has been criticized due the double use of the data, which is also
the case in the construction of the effective number of parameters pD, used as a complexity measure in
the DIC. Posterior Bayes factors can, however, support more complex models than traditional Bayes
factors.

4. Generalized Eyring ALT models

In ALT, items are tested in an environment that is more severe than their normal operating environ-
ment, in order to induce early failures. This is performed by applying accelerated levels of stressors
such as temperature, voltage or humidity to the items. The life characteristics under normal operating
conditions can then be extrapolated from these accelerated failure times, by means of a functional
relationship known as a time transformation function.

Consider two stressors, one thermal and one non-thermal. Indicate the k distinct accelerated levels
of the stressors by {Ti, S i} , i = 1, . . . , k, where Ti, i = 1, . . . , k are the accelerated levels of the thermal
stressor and S i, i = 1, . . . , k are the accelerated levels of the non-thermal stressor. An item is exposed
to the constant application of a specific stress level combination {Ti, S i}.

Suppose that ni items are tested at each of the k different stress levels and the test is truncated at
time τi. Denote the failure times by xi j, j = 1, . . . , ni, i = 1, . . . , k. The likelihood function, in general,
is then given by

L
(
x |Θ

)
=

k∏
i=1

 ri∏
j=1

f
(
xi j |Θ

) [R (τi)]ni−ri ,
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where R denotes the reliability function and Θ the parameters under investigation. Note that for
complete samples ri = ni. For type-I censoring ri is the number of failures that occur before censoring
time τi, where τi < ∞, i = 1, . . . , k are predetermined censoring times for the k different stress levels.
For type-II censoring, τi = xi(ri), where xi(ri) is the rth

i ordered failure time, and ri, i = 1, . . . , k are the
pre-chosen number of failures after which censoring occurs for the k different stress levels. Smit and
Raubenheimer (2021, 2022) investigated Bayesian Eyring ALT models using the Birnbaum-Saunders
and Weibull distributions as the lifetime models.

4.1. The GEBS model

Let X be a continuous random variable that follows a Birnbaum-Saunders distribution with shape
parameter α and scale parameter β (α > 0, β > 0). The PDF of X is then given by

f (x |α, β ) =
x + β

2
√

2πα
√
β
√

x3
i

exp
[
−

1
2α2

(
x
β

+
β

x
− 2

)]
, x > 0, (4.1)

where Φ (·) is the CDF of the standard normal distribution. A common practice in ALT is to assume
that the Birnbaum-Saunders’ scale parameter β depends on the stress levels, whereas the shape pa-
rameter α does not (see, for example, Owen and Padgett, 2000; Upadhyay and Mukherjee, 2010; Sun
and Shi, 2016; Sha, 2018). The reparameterization of β given by the generalized Eyring model is

βi =
1
Ti

exp
(
θ1 +

θ2

Ti
+ θ3Vi +

θ4Vi

Ti

)
, (4.2)

where θ1, θ2, θ3, and θ4 are unknown parameters, and Vi is a function of the non-thermal stressor S i

(Escobar and Meeker, 2006). From (4.1) and (4.2) it follows that the Birnbaum-Saunders PDF of a
lifetime subjected to the ith stress level, can be written as

f (xi |α, θ1, θ2, θ3, θ4 ) =
xi + 1

Ti
exp

(
θ1 + θ2

Ti
+ θ3Vi + θ4Vi

Ti

)
2
√

2πα
√

x3
i

√
1
Ti

exp
(
θ1 + θ2

Ti
+ θ3Vi + θ4Vi

Ti

)
× exp

{
−

1
2α2

[
xiTi exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
+

1
xiTi

exp
(
θ1 +

θ2

Ti
+ θ3Vi +

θ4Vi

Ti

)
− 2

]}
. (4.3)

The corresponding reliability function at some time τ is given by

R(τ) = 1 − Φ

 1
α


√
τTi exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
−

√
1
τTi

exp
(
θ1 +

θ2

Ti
+ θ3Vi +

θ4Vi

Ti

)
 .
(4.4)
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From (4.3) and (4.4), it follows that the likelihood function for the GEBS model can be written as

L
(
x |α, θ1, θ2, θ3, θ4

)
=

(
2
√

2πα
)−∑k

i=1 ri
exp

 1
α2

k∑
i=1

ri

 ×
 k∏

i=1

ri∏
j=1

xi j + 1
Ti

exp
(
θ1 + θ2

Ti
+ θ3Vi + θ4Vi

Ti

)
x

3
2
i j


× exp

− 1
2α2

k∑
i=1

Ti exp
(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

) ri∑
j=1

xi j


−

1
2α2

k∑
i=1

 1
Ti

exp
(
θ1 +

θ2

Ti
+ θ3Vi +

θ4Vi

Ti

) ri∑
j=1

1
xi j




×

k∏
i=1


[
Ti exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)] ri
2

×

1 − Φ

 1
α


√
τiTi exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)

−

√
1
τiTi

exp
(
θ1 +

θ2

Ti
+ θ3Vi +

θ4Vi

Ti

)



ni−ri
 . (4.5)

Assume independent priors on the model parameters θ1, θ2, θ3, θ4 and α (see, for example, Upadhyay
and Mukherjee, 2010), which leads to the joint prior distribution being given by

π (α, θ1, θ2, θ3, θ4) = π (α) π (θ1) π (θ2) π (θ3) π (θ4) . (4.6)

The joint posterior distribution is then given by

π
(
α, θ1, θ2, θ3, θ4

∣∣∣x )
∝ L

(
x |α, θ1, θ2, θ3, θ4

)
π (α, θ1, θ2, θ3, θ4) .

For the GEBS model, gamma priors are imposed on all the parameters, therefore

α ∼ Γ (c0, c1) , c0, c1 > 0, π (α) ∝ αc0−1 exp (−c1α) ,

θ1 ∼ Γ (c2, c3) , c2, c3 > 0, π (θ1) ∝ θc2−1
1 exp (−c3θ1) ,

θ2 ∼ Γ (c4, c5) , c4, c5 > 0, π (θ2) ∝ θc4−1
2 exp (−c5θ2) ,

θ3 ∼ Γ (c6, c7) , c6, c7 > 0, π (θ3) ∝ θc6−1
3 exp (−c7θ3) ,

θ4 ∼ Γ (c8, c9) , c8, c9 > 0, π (θ4) ∝ θc8−1
4 exp (−c9θ4) .

The joint prior from (4.6) can now be written as

π (α, θ1, θ2, θ3, θ4) ∝ αc0−1θc2−1
1 θc4−1

2 θc6−1
3 θc8−1

4 exp (−c1α − c3θ1 − c5θ2 − c7θ3 − c9θ4) . (4.7)



Bayes factors for ALT 521

The resulting joint posterior, using (4.5) and (4.7), is

π
(
α, θ1, θ2, θ3, θ4

∣∣∣x )
∝ αc0−1−

∑k
i=1 riθc2−1

1 θc4−1
2 θc6−1

3 θc8−1
4

× exp

 1
α2

k∑
i=1

ri

 exp (−c1α − c3θ1 − c5θ2 − c7θ3 − c9θ4)

×

 k∏
i=1

ri∏
j=1

xi j + 1
Ti

exp
(
θ1 + θ2

Ti
+ θ3Vi + θ4Vi

Ti

)
x

3
2
i j


× exp

− 1
2α2

k∑
i=1

Ti exp
(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

) ri∑
j=1

xi j


−

1
2α2

k∑
i=1

 1
Ti

exp
(
θ1 +

θ2

Ti
+ θ3Vi +

θ4Vi

Ti

) ri∑
j=1

1
xi j




×

k∏
i=1


[
Ti exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)] ri
2

×

1 − Φ

 1
α


√
τiTi exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)

−

√
1
τiTi

exp
(
θ1 +

θ2

Ti
+ θ3Vi +

θ4Vi

Ti

)



ni−ri
 .

See Smit and Raubenheimer (2022) for further details on this model. The posterior is mathematically
intractable, hence MCMC methods have to be employed to draw posterior samples to be used for
inference.

4.2. The GEW model

Let X be a continuous random variable that follows a Weibull distribution with scale parameter α and
shape parameter β (α > 0, β > 0). The PDF is then given by

f (x |α, β ) = αβxβ−1 exp
(
−αxβ

)
, x ≥ 0. (4.8)

A common assumption in the literature is that the Weibull scale parameter α is then dependent on
the stress levels, whereas the shape parameter β is not (see, for example, Mazzuchi et al., 1997; Soyer
et al., 2008; Upadhyay and Mukherjee, 2010). The reparameterization of α given by the generalized
Eyring model, for this formulation of the Weibull model, is

αi = Ti exp
(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
, (4.9)

where θ1, θ2, θ3, and θ4 are unknown model parameters, and Vi is a function of the non-thermal stressor
S i (Escobar and Meeker, 2006). For a lifetime subjected to the ith level of the stressors, it follows from
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(4.8) and (4.9) that the Weibull PDF can be written as

f (xi |θ1, θ2, θ3, θ4, β ) = Ti exp
(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
βxβ−1

i

× exp
[
−Ti exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
xβi

]
. (4.10)

The corresponding reliability function at some time τ is given by

R (τ) = exp
[
−Ti exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
τβ

]
. (4.11)

From (4.10) and (4.11) it follows that the likelihood function for the GEW model is given by

L
(
x |θ1, θ2, θ3, θ4, β

)
=

k∏
i=1

 ri∏
j=1

f
(
xi j |θ1, θ2, θ3, θ4, β

) [R (τi)]ni−ri

=

k∏
i=1

exp
[
− (ni − ri) Ti exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
τ
β
i

]
× βri T ri

i exp
(
−θ1ri −

θ2ri

Ti
− θ3riVi −

θ4riVi

Ti

)
×

ri∏
j=1

xβ−1
i j exp

[
−Ti exp

(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
xβi j

]

= β
∑k

i=1 ri exp

−θ1

k∑
i=1

ri − θ2

k∑
i=1

ri

Ti
− θ3

k∑
i=1

riVi − θ4

k∑
i=1

riVi

Ti


× exp

− k∑
i=1

(ni − ri) Ti exp
(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
τ
β
i

 (4.12)

× exp

− k∑
i=1

ri∑
j=1

Ti exp
(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
xβi j


 k∏

i=1

ri∏
j=1

Tix
β−1
i j

 .
Assume that the priors on the unknown parameters θ1, θ2, θ3, θ4 and β are independent (see, for
example, Soyer et al., 2008; Upadhyay and Mukherjee, 2010), and given by

π (θ1, θ2, θ3, θ4, β) = π (θ1) π (θ2) π (θ3) π (θ4) π (β) .

The joint posterior distribution is then given by

π
(
θ1, θ2, θ3, θ4, β

∣∣∣x )
∝ L

(
x |θ1, θ2, θ3, θ4, β

)
π (θ1, θ2, θ3, θ4, β) .

Gamma priors are imposed on all the parameters, with

θ1 ∼ Γ(c10, c11), c10, c11 > 0, π2 (θ1) ∝ θc10−1
1 exp (−c11θ1) ,

θ2 ∼ Γ(c12, c13), c12, c13 > 0, π2 (θ2) ∝ θc12−1
2 exp (−c13θ2) ,

θ3 ∼ Γ(c14, c15), c14, c15 > 0, π2 (θ3) ∝ θc14−1
3 exp (−c15θ3) ,

θ4 ∼ Γ(c16, c17), c16, c17 > 0, π2 (θ4) ∝ θc16−1
4 exp (−c17θ4) ,

β ∼ Γ(c18, c19), c18, c19 > 0, π2 (β) ∝ βc18−1 exp (−c19β) .
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Table 1: Failure times for some device

# Temperature (K) Humidity Failure time # Temperature (K) Humidity Failure time
1 333 0.9 521 12 353 0.8 504
2 333 0.9 561 13 353 0.9 115
3 333 0.9 575 14 353 0.9 119
4 333 0.9 599 15 353 0.9 150
5 333 0.9 609 16 353 0.9 152
6 333 0.9 684 17 353 0.9 153
7 333 0.9 709 18 353 0.9 155
8 333 0.9 713 19 353 0.9 156
9 353 0.8 345 20 353 0.9 164

10 353 0.8 357 21 353 0.9 199
11 353 0.8 439

The joint prior for the GEW model is then given by

π2 (θ1, θ2, θ3, θ4, β) ∝ θc10−1
1 θc12−1

2 θc14−1
3 θc16−1

4 βc18−1 exp (−c11θ1 − c13θ2 − c15θ3 − c17θ4 − c19β) , (4.13)

and, using (4.12) and (4.13), the joint posterior is given by

π2

(
θ1, θ2, θ3, θ4, β

∣∣∣x )
∝ θc10−1

1 θc12−1
2 θc14−1

3 θc16−1
4 βc18−1 exp (−c11θ1 − c13θ2 − c15θ3 − c17θ4 − c19β)

× β
∑k

i=1 ri exp

−θ1

k∑
i=1

ri − θ2

k∑
i=1

ri

Ti
− θ3

k∑
i=1

riVi − θ4

k∑
i=1

riVi

Ti


× exp

− k∑
i=1

(ni − ri) Ti exp
(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
τ
β
i


× exp

− k∑
i=1

ri∑
j=1

Ti exp
(
−θ1 −

θ2

Ti
− θ3Vi −

θ4Vi

Ti

)
xβi j


 k∏

i=1

ri∏
j=1

Tix
β−1
i j

 .
See Smit and Raubenheimer (2021) for further details on this model. Due to the complexity of the
posterior, MCMC methods are used to draw posterior samples to base inferences on.

5. Application

An ALT data set from Reliasoft (2020) is used in this application. The data represent failure times
for a certain device under accelerated temperature and relative humidity stressors. The normal use
conditions are a temperature of Tu = 313K and a relative humidity of S u = 0.5. The data set,
displayed in Table 1, contains failure data on 21 devices that were tested, where testing continued
until all the devices had failed. The combined effect of these stressors must be investigated by a
dual-stress acceleration model, such as the generalized Eyring model.

Widely used non-informative priors, such as the maximal data information, Jeffreys, reference,
and probability matching priors are not considered, due to the complexity of the GEW and GEBS
models. The prior specifications for these models are given in Table 2. Three choices of hyperparam-
eters are used for each model, in order to investigate model selection. The models in this application
are denoted by GEWBF1, GEWBF2, GEWBF3, GEBSBF1, GEBSBF2, and GEBSBF3. Flat gamma pri-
ors are imposed on the GEWBF1 and GEBSBF1 models. Subjective gamma priors with mean 5 and
different variances are used for the GEWBF2 and GEWBF3, as well as for the GEBSBF2 and GEBSBF3
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Table 2: Prior specifications for the Bayes factors application

Model θ1 θ2 θ3 θ4 α or β
GEWBF1 Γ(1, 0.001) Γ(1, 0.001) Γ(1, 0.001) Γ(1, 0.001) Γ(1, 0.001)
GEWBF2 Γ(5, 1) Γ(5, 1) Γ(5, 1) Γ(5, 1) Γ(5, 1)
GEWBF3 Γ(125, 25) Γ(125, 25) Γ(125, 25) Γ(125, 25) Γ(125, 25)
GEBSBF1 Γ(1, 0.001) Γ(1, 0.001) Γ(1, 0.001) Γ(1, 0.001) Γ(1, 0.001)
GEBSBF2 Γ(2.5, 0.5) Γ(2.5, 0.5) Γ(2.5, 0.5) Γ(2.5, 0.5) Γ(2.5, 0.5)
GEBSBF3 Γ(5, 1) Γ(5, 1) Γ(5, 1) Γ(5, 1) Γ(5, 1)
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Figure 1: Marginal posterior distributions for the GEW models.

models. These subjective priors are chosen such that the DIC values for the models differ enough to
illustrate more meaningful model selection conclusions. These choices are also made to investigate
the sensitivity of the GEW and GEBS models. If a reliability engineer has prior information regarding
the parameters of the models, this can easily be incorporated via the choice of the hyperparameters.
As is illustrated in this application, weight is placed around a specific mean, with varying degrees of
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Figure 2: Marginal posterior distributions for the GEBS models.

certainty.
Since no prior information regarding the models are available, the prior model probabilities are

set equal. This allows us to perform model selection by using only the Bayes factors. The models
are implemented in OpenBUGS to generate posterior samples to base inference on. A single Markov
chain is initiated for each model, with a burn-in of 50,000 iterations, after which 200,000 samples
are obtained. Trace plots and the modified Gelman-Rubin statistic, proposed by Brooks and Gelman
(1998), are used to verify that the Markov chains have converged before the burn-in iterations end.
The Monte Carlo error is less than 5% of the sample standard deviation for all parameters in these
models, indicating that enough samples have been generated.

The marginal posterior distributions for the models are given in Figures 1 and 2. It can be noted
that the models where flat priors are used produce fairly skewed marginal posteriors. The marginal
posteriors for the GEWBF2, GEBSBF2 and GEBSBF3 models are somewhat less skewed, and those of
the GEWBF3 model are relatively symmetric.

The DIC values for the models considered in this application are given in Table 3. The GEBSBF1
model exhibits the lowest DIC amongst the six models. It is clear that the DIC indicates a strong



526 Neill Smit, Lizanne Raubenheimer

Table 3: Deviance information criterion for the Bayes factors application

Model GEWBF1 GEWBF2 GEWBF3 GEBSBF1 GEBSBF2 GEBSBF3
DIC 278.4 280.9 284.6 248.9 250.8 253.3

Table 4: Natural log of the marginal likelihood estimates for the models

Model # Model SMCE LME HME PPDE
1 GEWBF1 NA −166.7920 −141.5369 −137.1797
2 GEWBF2 −145.0426 −145.1006 −141.6805 −138.7164
3 GEWBF3 NA −176.4858 −145.1727 −141.3472
4 GEBSBF1 NA −170.1288 −142.2716 −136.8164
5 GEBSBF2 NA −147.7771 −144.2880 −137.6861
6 GEBSBF3 −150.9820 −151.8292 −146.6435 −138.8855

preference towards the GEBS models in this case. Among the GEW models, the GEWBF1, exhibits the
lowest DIC. Again, it can be noted that the models with smaller variance subjective priors have higher
DIC values than the models with flat priors or subjective priors with a larger variance. Considering
all six models and keeping in mind that the GEBSBF1 model has the lowest DIC, the guidelines in
Burnham and Anderson (1998) indicate that GEBSBF2 still has substantial support to be used for
inference. There is considerably less support to choose GEBSBF3, and the remaining three GEW
models have almost no support to be chosen. By investigating the GEW models separately, we see
that GEWBF1 has the lowest DIC, there is fairly substantial support for GEWBF2, and considerably
less support for GEWBF3.

Due to the large discrepancies between many of the prior distributions in Table 2 and the marginal
posteriors produced from the MCMC algorithm, only partial results are displayed for the SMCE in this
application. Sampling from the prior for this estimator causes computational issues for the majority
of the models. Values where computational issues are encountered are indicated by “NA”.

Table 4 shows the natural log of the marginal likelihood estimates for the models, given by the
estimators. The natural log of the PPDE values, which are required to calculate the posterior Bayes
factors, are also given. We number the models in this table in order to simplify the notation for the
Bayes factors to follow.

The LME favours the GEWBF2 model, the HME favours the GEWBF1 model, and the PPDE
favours the GEBSBF1 model. It is interesting to note that the LME does not favour the models where
flat priors are used. This can in part be explained by the skewed marginal posterior distributions
produced by these models, seeing that the LME works well for symmetric distributions. The SMCE
produces values close to that of the LME, where computational issues are not encountered. For the
HME and PPDE there is not such a distinctive preference towards the GEBS models, as we have seen
with the DIC. It must again be stressed that the DIC and Bayes factors measure model fit differently,
as is explained in Spiegelhalter et al. (2002).

Table 5 contains the Bayes factor values produced using the different estimators, for all combina-
tions of the models used in this application. Interpretations for these Bayes factors are also provided.
Only one Bayes factor can be calculated using the SMCE, where the GEWBF2 model enjoys very
strong evidence over the GEBSBF3 model. Note that when using the LME there is positive to very
strong evidence in favour of the GEWBF2 model. Considering the GEBS models separately, there is
very strong evidence for the GEBSBF2 model. When using the HME, we observe negligible to very
strong evidence for the GEWBF1 model. Among only the GEBS models, there is positive to strong
evidence in favour of the GEBSBF1 model. It is clear that the Bayes factors, making use of the HME,
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Table 5: Bayes factors and interpretations for model pairs using the various estimators

i j SMCE LME
Bi j Interpretation Bi j Interpretation

12 NA NA 3.7979 × 10−10 Very strong evidence for model 2
13 NA NA 1.6217 × 104 Very strong evidence for model 1
14 NA NA 28.1309 Strong evidence for model 1
15 NA NA 5.5201 × 10−9 Very strong evidence for model 5
16 NA NA 3.1751 × 10−7 Very strong evidence for model 6
23 NA NA 4.2700 × 1013 Very strong evidence for model 2
24 NA NA 7.4069 × 1010 Very strong evidence for model 2
25 NA NA 14.5346 Positive evidence for model 2
26 379.6942 Very strong evidence for model 2 836.0159 Very strong evidence for model 2
34 NA NA 0.0017 Very strong evidence for model 4
35 NA NA 3.4039 × 10−13 Very strong evidence for model 5
36 NA NA 1.9579 × 10−11 Very strong evidence for model 6
45 NA NA 1.9623 × 10−10 Very strong evidence for model 5
46 NA NA 1.1287 × 10−8 Very strong evidence for model 6
56 NA NA 57.5192 Strong evidence for model 5

i j HME PPDE
Bi j Interpretation Bi j Interpretation

12 1.1543 Negligible evidence for model 1 4.6489 Positive evidence for model 1
13 37.9317 Strong evidence for model 1 64.5548 Strong evidence for model 1
14 2.0847 Negligible evidence for model 1 0.6954 Negligible evidence for model 4
15 15.6587 Positive evidence for model 1 1.6592 Negligible evidence for model 1
16 165.1082 Very strong evidence for model 1 5.5059 Positive evidence for model 1
23 32.8600 Strong evidence for model 2 13.8860 Positive evidence for model 2
24 1.8060 Negligible evidence for model 2 0.1496 Positive evidence for model 4
25 13.5651 Positive evidence for model 2 0.3569 Negligible evidence for model 5
26 143.0325 Strong evidence for model 2 1.1843 Negligible evidence for model 2
34 0.0550 Positive evidence for model 4 0.0108 Strong evidence for model 4
35 0.4128 Negligible evidence for model 5 0.0257 Strong evidence for model 4
36 4.3528 Positive evidence for model 3 0.0853 Positive evidence for model 6
45 7.5112 Positive evidence for model 4 2.3862 Negligible evidence for model 4
46 79.2000 Strong evidence for model 4 7.9181 Positive evidence for model 4
56 10.5442 Positive evidence for model 5 3.3183 Positive evidence for model 5

also favour the models where flat priors are used. This is in agreement with the conclusions from the
DIC. The PPDE values are used to calculate the posterior Bayes factors. Here, the GEBSBF1 model
is supported with negligible to strong evidence. For the GEW models separately, we see positive to
strong evidence for the GEWBF1 model. The posterior Bayes factors also favour the models where
flat priors are utilized. Table 6 contains the posterior model probability (PMP) values for each pair of
models, given by the estimators discussed in this paper.

6. Simulation study

In this simulation study, model selection is performed via the DIC and Bayes factors, using the dis-
cussed methods to estimate the marginal likelihood. In order to perform model selection over all
iterations of the simulation runs, the results for the average DIC values and average PMP values are
displayed and discussed. Two simulation settings are investigated and the R2OpenBUGS package is
utilized.

Consider ALT performed on some product, with temperature and relative humidity as the stressors.
Assume that the normal operating conditions of the product are a temperature of Tu = 350K and a



528 Neill Smit, Lizanne Raubenheimer

Table 6: Posterior model probabilities for model pairs using the various estimators

i j SMCE LME HME PPDE
PMP model mi PMP model m j PMP model mi PMP model m j PMP model mi PMP model m j PMP model mi PMP model m j

12 NA NA 0.0000 1.0000 0.5358 0.4642 0.8230 0.1770
13 NA NA 0.9999 0.0001 0.9743 0.0257 0.9847 0.0153
14 NA NA 0.9657 0.0343 0.6758 0.3242 0.4102 0.5898
15 NA NA 0.0000 1.0000 0.9400 0.0600 0.6240 0.3760
16 NA NA 0.0000 1.0000 0.9940 0.0060 0.8463 0.1537
23 NA NA 1.0000 0.0000 0.9705 0.0295 0.9328 0.0672
24 NA NA 1.0000 0.0000 0.6436 0.3564 0.1301 0.8699
25 NA NA 0.9356 0.0644 0.9313 0.0687 0.2630 0.7370
26 0.9974 0.0026 0.9988 0.0012 0.9931 0.0069 0.5422 0.4578
34 NA NA 0.0017 0.9983 0.0521 0.9479 0.0107 0.9893
35 NA NA 0.0000 1.0000 0.2922 0.7078 0.0251 0.9749
36 NA NA 0.0000 1.0000 0.8132 0.1868 0.0786 0.9214
45 NA NA 0.0000 1.0000 0.8825 0.1175 0.7047 0.2953
46 NA NA 0.0000 1.0000 0.9875 0.0125 0.8879 0.1121
56 NA NA 0.9829 0.0171 0.9134 0.0866 0.7684 0.2316

Table 7: Average deviance information criterion for the different simulation settings and sample sizes

Model # 1 2 3 4 5 6
Model GEWBF1 GEWBF2 GEWBF3 GEBSBF1 GEBSBF2 GEBSBF3

ΘW = {β = 1, θ1 = 1, θ2 = 1, θ3 = 1, θ4 = 1}
n = 30 252.0 256.1 370.9 217.8 218.5 221.2
n = 60 502.2 504.8 675.3 438.8 439.3 440.7

ΘBS = {α = 3, θ1 = 0.5, θ2 = 2, θ3 = 3, θ4 = 1.5}
n = 30 427.5 432.1 566.4 378.7 378.6 379.0
n = 60 853.0 855.8 1051.6 755.6 755.3 755.4

relative humidity of S u = 0.3. The accelerated stress levels the product is tested under are

(Ti, S i) = {(400, 0.5); (450, 0.6); (500, 0.7)}.

In the first setting, ALT data is generated from the Weibull distribution specified in (4.10), with param-
eter values ΘW = {β = 1, θ1 = 1, θ2 = 1, θ3 = 1, θ4 = 1}. For the second setting, ALT data is generated
from the Birnbaum-Saunders distribution specified in (4.3), with parameter values ΘBS = {α = 3,
θ1 = 0.5, θ2 = 2, θ3 = 3, θ4 = 1.5}. In both settings the same prior distributions as in Table 2 are
used. Two sample sizes, n = {30, 60}, are considered, where the samples are split evenly between the
stress levels. Due to the computational intensity of the simulations, 1,000 iterations are used for each
setting and sample size. A burn-in of 50,000 iterations is set, whereafter 50,000 posterior samples are
generated to base inference on.

Table 7 contains the average DIC values for the settings and sample sizes used in this simulation
study. It is clear that there is a strong preference towards the GEBS models, even when data is gen-
erated from the Weibull distribution. The GEBSBF1 and GEBSBF2 models have substantial support.
Considering the GEW models only, there is substantial support for the GEWBF1 model. This may
be an indication that the DIC might not be the best tool for model selection when fitting different
distributions to data. However, considering the GEW and GEBS models separately, it does seem to
produce the expected results regarding model selection. The average PMP values, using the various
estimators, are displayed in Tables 8 to 11. Note that the SMCE is omitted from the simulation study,
since computational issues are encountered for the majority of models and iterations.

Considering setting ΘW , the LME produces inconsistent results over the two sample sizes. For
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Table 8: Average posterior model probabilities under setting ΘW and sample size n = 30

i j LME HME PPDE
PMP model mi PMP model m j PMP model mi PMP model m j PMP model mi PMP model m j

12 0.0000 1.0000 0.9878 0.0122 0.7902 0.2098
13 0.9968 0.0032 1.0000 0.0000 1.0000 0.0000
14 0.8307 0.1693 0.7896 0.2104 0.7854 0.2146
15 0.0260 0.9740 0.8940 0.1060 0.8002 0.1998
16 0.1701 0.8299 0.9970 0.0030 0.8427 0.1573
23 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
24 1.0000 0.0000 0.3250 0.6750 0.6572 0.3428
25 0.4703 0.5297 0.4590 0.5410 0.6749 0.3251
26 0.9700 0.0300 0.8916 0.1084 0.7270 0.2730
34 0.0154 0.9846 0.0002 0.9998 0.0007 0.9993
35 0.0019 0.9981 0.0005 0.9995 0.0009 0.9991
36 0.0083 0.9917 0.0013 0.9987 0.0022 0.9978
45 0.0000 1.0000 0.8081 0.1919 0.5649 0.4351
46 0.0146 0.9854 0.9974 0.0026 0.7103 0.2897
56 0.9999 0.0001 0.9881 0.0119 0.6668 0.3332

Table 9: Average posterior model probabilities under setting ΘW and sample size n = 60

i j LME HME PPDE
PMP model mi PMP model m j PMP model mi PMP model m j PMP model mi PMP model m j

12 0.0000 1.0000 0.9737 0.0263 0.7025 0.2975
13 0.0288 0.9712 1.0000 0.0000 1.0000 0.0000
14 1.0000 0.0000 0.9102 0.0898 0.9109 0.0891
15 1.0000 0.0000 0.9279 0.0721 0.9148 0.0852
16 1.0000 0.0000 0.9758 0.0242 0.9238 0.0762
23 0.1973 0.8027 1.0000 0.0000 1.0000 0.0000
24 1.0000 0.0000 0.7032 0.2968 0.8775 0.1225
25 1.0000 0.0000 0.7393 0.2607 0.8823 0.1177
26 1.0000 0.0000 0.8513 0.1487 0.8934 0.1066
34 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000
35 0.9981 0.0019 0.0000 1.0000 0.0003 0.9997
36 1.0000 0.0000 0.0000 1.0000 0.0009 0.9991
45 0.0000 1.0000 0.6947 0.3053 0.5617 0.4383
46 0.0239 0.9761 0.9454 0.0546 0.6564 0.3436
56 1.0000 0.0000 0.9046 0.0954 0.6126 0.3874

n = 30, model GEBSBF2 is favoured and for n = 60, model GEWBF3. This is not the expected result
considering the simulation setting, and can again be attributed to the fact that the LME only works
well for symmetrical distributions. For the HME and PPDE the results are consistent over sample sizes
and there is strong evidence for the GEWBF1 model. This is the expected result, since the parameters
for this setting were chosen to be significantly different to those imposed by the subjective priors.

Considering setting ΘBS , the LME again produces inconsistent results over the two sample sizes.
The HME shows the strongest evidence toward the GEBSBF1 model, whereas the PPDE does so
towards the GEBSBF2 model. It must however be noted that the average PMP values for both these
models are close to 0.5 for both the HME and PPDE, which may indicate that they are both suitable
models. This is the expected result when considering the parameters for this setting. The parameters
were chosen to be different to those imposed by the subjective priors, but to a lesser degree than in
setting ΘW . Taking into account the leniency, in terms of the prior distribution variance, of the priors
imposed on GEBSBF2, it can be expected that either this model or the GEBS model where flat priors
are imposed (GEBSBF1) can be suitable for setting ΘBS .
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Table 10: Average posterior model probabilities under setting ΘBS and sample size n = 30

i j LME HME PPDE
PMP model mi PMP model m j PMP model mi PMP model m j PMP model mi PMP model m j

12 0.0000 1.0000 0.9933 0.0067 0.8158 0.1842
13 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
14 0.0128 0.9872 0.1074 0.8926 0.0887 0.9113
15 0.0000 1.0000 0.1078 0.8922 0.0930 0.9070
16 0.0000 1.0000 0.2387 0.7613 0.1065 0.8935
23 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
24 0.9446 0.0554 0.0035 0.9965 0.0336 0.9664
25 0.0004 0.9996 0.0043 0.9957 0.0349 0.9651
26 0.0029 0.9971 0.0112 0.9888 0.0402 0.9598
34 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
35 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
36 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
45 0.0000 1.0000 0.4889 0.5111 0.5122 0.4878
46 0.0000 1.0000 0.7438 0.2562 0.5562 0.4438
56 0.9718 0.0282 0.7642 0.2358 0.5463 0.4537

Table 11: Average posterior model probabilities under setting ΘBS and sample size n = 60

i j LME HME PPDE
PMP model mi PMP model m j PMP model mi PMP model m j PMP model mi PMP model m j

12 0.0000 1.0000 0.9841 0.0159 0.7158 0.2842
13 0.3820 0.6180 1.0000 0.0000 1.0000 0.0000
14 1.0000 0.0000 0.0237 0.9763 0.0219 0.9781
15 0.9970 0.0030 0.0241 0.9759 0.0220 0.9780
16 0.9984 0.0016 0.0398 0.9602 0.0234 0.9766
23 0.8378 0.1622 1.0000 0.0000 1.0000 0.0000
24 1.0000 0.0000 0.0008 0.9992 0.0122 0.9878
25 1.0000 0.0000 0.0007 0.9993 0.0122 0.9878
26 1.0000 0.0000 0.0021 0.9979 0.0129 0.9871
34 0.9843 0.0157 0.0000 1.0000 0.0000 1.0000
35 0.9019 0.0981 0.0000 1.0000 0.0000 1.0000
36 0.9243 0.0757 0.0000 1.0000 0.0000 1.0000
45 0.0000 1.0000 0.4879 0.5121 0.4999 0.5001
46 0.0000 1.0000 0.6143 0.3857 0.5204 0.4796
56 0.9738 0.0262 0.6268 0.3732 0.5212 0.4788

7. Conclusions

In this paper, the use of Bayes factors and the DIC for model selection are compared in a Bayesian
ALT setup. Two dual-stress models, namely the GEW and GEBS models with gamma priors, are
utilized for this comparison. The posterior distributions for these models can not be written in closed
form, which complicates the calculation of the Bayes factors. MCMC methods are employed to
generate posterior samples to base inference on. Methods for estimating the marginal likelihood,
without further complicating the sampling process, is explored. These methods include the SMCE,
LME, HME, and PPDE used for estimating posterior Bayes factors.

The models are applied to an ALT data set where the stressors are temperature and relative humid-
ity. Several choices of hyperparameters are used in order to illustrate the use of the DIC and Bayes
factors in model selection. It is interesting to note that the DIC shows definitive support for the GEBS
models above the GEW models. The models where flat priors are imposed on the model parameters
are favoured by the DIC. The different methods for estimating the marginal likelihood give variable
conclusions. The SMCE causes computational issues for some of the models and only partial results
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are given. The LME results in Bayes factors which show virtually no evidence in favour of the models
with flat priors. The Bayes factors produced by the HME and the posterior Bayes factors have results
that are more comparable to the DIC. Viewing the GEW and GEBS models separately, these Bayes
factors also favour the models with flat priors. The HME shows more evidence in support of the
GEW models, whereas the posterior Bayes factors support the GEBS models to a greater extent. It is
interesting to note that the conclusions from the posterior Bayes factors most closely relate to those
made by the DIC.

A simulation study is also conducted, where two simulation settings are used as well as two sample
sizes. The average DIC and average PMP values are compared for the models under the two settings.
The DIC favours the GEBS models, even when data were generated from the Weibull distribution.
The LME produces inconsistent average PMP results over the two sample sizes. The expected results
are obtained from the HME and PPDE for both the Weibull and Birnbaum-Saunders settings.
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