과제정보
This work was supported by a research grant from Seoul Women's University (2022-0136).
참고문헌
- S. Hao, B. Liu, S. Nathy, W.G.J. Halfond, R. Govindan. PUMA: Programmable UI-Automation for Large-Scale Dynamic Analysis of Mobile Apps. In ACM MobiSys, 2014. DOI: https://doi.org/10.1145/2594368.2594390.
- Y. Li, Z. Yang, Y. Guo, and X. Chen. DroidBot: A Lightweight UI-Guided Test Input Generator for Android. In IEEE/ACM 39th IEEE International Conference on Software Engineering Companion, 2017. DOI: https://doi.org/10.1109/ICSE-C.2017.8.
- https://developer.android.com/studio/test/monkey.
- S. D. Yalew, G. Q. Maguire, S. Haridi, and M. Correia. T2Droid: A TrustZone-Based Dynamic Analyser for Android Applications. In 2017 IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 240-247. DOI: https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.243.
- A. Dawoud, S. Bugiel. Bringing Balance to the Force: Dynamic Analysis of the Android Application Framwork. In NDSS 2021. DOI: https://doi.org/10.14722/ndss.2021.23106.
- A. Wald. Sequential Analysis, Dover, 2004.
- Y. Li, Z. Yang, Y. Guo, and X. Chen. Humanoid: A Deep Learning-Based Approach to Automated Black-box Android App Testing. In 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), 2019, pp. 1070-1073. DOI: https://doi.org/10.1109/ASE.2019.00104.
- Ho, Jun-Won (2022): Game Theoretic Security Analysis against Input-Driven Evasive Malware in the IoT. TechRxiv. Preprint. DOI: https://doi.org/10.36227/techrxiv.19633677.v1
- Ho, Jun-Won. GAME THEORY BASED DYNAMIC ANALYSIS INPUT SYSTEM AND METHOD FOR INTELLIGENT MALICIOUS APP DETECTION. Republic of Korea Patent. Registration Number/Date: 1022106590000/(2021.01.27).
- Ho, Jun-Won. METHOD AND APPARATUS FOR DIAGNOSING MALICIOUS APP DETECTED APPLICATION. Republic of Korea Patent. Registration Number/Date: 1020995060000 (2020.04.03).
- J. Blackthorne, A. Bulazel, A. Fasano, P. Biernat, and B. Yener. AVLeak: Fingerprinting Antivirus Emulators Through Black-Box Testing. In USENIX Workshop on Offensive Technologies, 2016.
- D. C. DElia, E. Coppa, F. Palmaro, and L. Cavallaro. On the Dissection of Evasive Malware. In IEEE Transactions on Information Forensics and Security, vol. 15, pp. 2750-2765, 2020. DOI: https://doi.org/10.1109/TIFS.2020.2976559.
- W. Diao, X. Liu, Z. Li, and K. Zhang. Evading Android Runtime Analysis Through Detecting Programmed Interactions. In ACM WiSec, 2016. DOI: https://doi.org/10.1145/2939918.2939926.
- Y. Jing, Z. Zhao, G.-J. Ahn, and H. Hu. Morpheus: Automatically Generating Heuristics to Detect Android Emulators. In Proceedings of the Annual Computer Security Applications Conference (ACSAC), 2014. DOI: https://doi.org/10.1145/2664243.2664250.
- N. Miramirkhani, M. P. Appini, N. Nikiforakis, and M. Polychronakis. Spotless Sandboxes: Evading Malware Analysis Systems using Wear-and-Tear Artifacts. 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp. 1009-1024, DOI: https://doi.org/ 10.1109/SP.2017.42.
- H. Shi, J. Mirkovic, and A. Alwabel. Handling Anti-Virtual Machine Techniques in Malicious Software. In ACM Transactions on Privacy and Security, Article No.2, December 2017. DOI: https://doi.org/10.1145/3139292.
- J. Wampler, I. Martiny, and E. Wustrow. ExSpectre: Hiding Malware in Speculative Execution. In Network and Distributed Systems Security(NDSS) Symposium, 2019.
- D. Kirat, G. Vigna, C. Kruegel. BareCloud: Bare-metal Analysis-based Evasive Malware Detection. In Usenix Security, 2014.
- X. Wang, S. Zhu, D. Zhou, and Y. Yang. Droid-AntiRM: Taming Control Flow Anti-analysis to Support Automated Dynamic Analysis of Android Malware. In ACSAC, 2017, Pages 350-361. DOI: https://doi.org/10.1145/3134600.3134601
- X. Wang, Y. Yang, and S. Zhu. Automated Hybrid Analysis of Android Malware through Augmenting Fuzzing with Forced Execution. In IEEE Transactions on Mobile Computing, vol. 18, no. 12, pp. 2768-2782, 2019. DOI: https://doi.org/10.1109/TMC.2018.2886881.
- J. Zhang, Z. Gu, J. Jang, D. Kirat, M. Stoecklin, X. Shu, H. Huang. Scarecrow: Deactivating Evasive Malware via Its Own Evasive Logic. In50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 2020, pp. 76-87.
- X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin. Dark Hazard: Learning-based, Large-scale Discovery of Hidden Sensitive Operations in Android Apps. In NDSS, 2017.
- L. Bello and M. Pistoia. Ares: Triggering Payload of Evasive Android Malware. In IEEE/ACM 5th International Conference on Mobile Software Engineering and Systems (MOBILESoft), 2018, pp. 2-12.
- S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Kirat,C. Kruegel, and G. Vigna. BareDroid: Large-Scale Analysis of Android Apps on Real Devices. In ACSAC, 2015. DOI: https://doi.org/10.1145/2818000.2818036.