DOI QR코드

DOI QR Code

SVM on Top of Deep Networks for Covid-19 Detection from Chest X-ray Images

  • Received : 2022.04.06
  • Accepted : 2022.09.08
  • Published : 2022.09.30

Abstract

In this study, we propose training a support vector machine (SVM) model on top of deep networks for detecting Covid-19 from chest X-ray images. We started by gathering a real chest X-ray image dataset, including positive Covid-19, normal cases, and other lung diseases not caused by Covid-19. Instead of training deep networks from scratch, we fine-tuned recent pre-trained deep network models, such as DenseNet121, MobileNet v2, Inception v3, Xception, ResNet50, VGG16, and VGG19, to classify chest X-ray images into one of three classes (Covid-19, normal, and other lung). We propose training an SVM model on top of deep networks to perform a nonlinear combination of deep network outputs, improving classification over any single deep network. The empirical test results on the real chest X-ray image dataset show that deep network models, with an exception of ResNet50 with 82.44%, provide an accuracy of at least 92% on the test set. The proposed SVM on top of the deep network achieved the highest accuracy of 96.16%.

Keywords

References

  1. C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao, "Clinical features of patients infected with 2019 novel coronavirus in wuhan, china," The Lancet, vol. 395, no. 10223, pp. 497-506, Feb. 2020. DOI: 10.1016/S0140-6736(20)30183-5.
  2. Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng, "Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia," New England Journal of Medicine, vol. 382, pp. 1199-1207, Mar. 2020. DOI: 10.1056/NEJMoa2001316.
  3. F. Wu, S. Zhao, B. Yu, Y. Chen, W. Wang, Z. Song, Y. Hu, Z. Tao, J. Tian, Y. Pei, M. Yuan, Y. Zhang, F. Dai, Y. Liu, Q. Wang, J. Zheng, L. Xu, E. C. Holmes, and Y. Zhang, "A new coronavirus associated with human respiratory disease in China," Nature, vol. 579, pp. 1-8, Feb. 2020. DOI: 10.1038/s41586-020-2008-3.
  4. N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, D. Wang, W. Xu, G. Wu, G. F. Gao, D. Phil., and W. Tan, "A novel coronavirus from patients with pneumonia in China, 2019," New England Journal of Medicine, vol. 382, pp. 727-733, Feb. 2020. DOI: 10.1056/NEJMoa2001017.
  5. I. Arevalo-Rodriguez, D. Buitrago-Garcia, D. Simancas-Racines, P. Zambrano-Achig, R. D. Campo, A. Ciapponi, O. Sued, L. Martines-Garcia, A. W. Rutjes, N. Low, P. M. Bossuyt, J. A. Perez-Molina, and J. Zamora, "False-negative results of initial rt-pcr assays for covid-19: A systematic review," PLoS One, vol. 15, no. 12, p. e0242958, Dec. 2020. DOI: 10.1371/journal.pone.0242958.
  6. J. F. Chan, S. Yuan, K. Kok, K. K. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C. Yip, R. W. Poon, H. Tsoi, S. K. Lo, K. Chan, V. K. Poon, W. Chan, J. D. Ip, J. Cai, Y. C. Cheng, H. Chen, C. K. Hui, and K. Yuen, "A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster," The Lancet, vol. 395, no. 10223, pp. 514-523, Feb. 2020. DOI: 10.1016/S0140-6736(20)30154-9.
  7. W. Hao and M. Li, "Clinical diagnostic value of CT imaging in COVID-19 with multiple negative RT-PCR testing," Travel Medicine and Infectious Disease, vol. 34, p. 101627, Mar.-Apr. 2020. DOI: 10.1016/j.tmaid.2020.101627.
  8. P. Huang, T. Liu, L. Huang, H. Liu, M. Lei, W. Xu, X. Hu, J. Chen, and B. Liu, "Use of chest ct in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion," Radiology, vol. 295, no. 1, pp. 22-23, Apr. 2020. DOI: 10.1148/radiol.2020200330.
  9. X. Xie, Z. Zhong, W. Zhong, W. Zhao, C. Zheng, F. Wang, and J. Liu, "Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: Relationship to negative RT-PCR testing," Radiology, vol. 296, no. 2, pp. E41-E45, Feb. 2020. DOI: 10.1148/radiol.2020200343.
  10. Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, "Deep learning for brain MRI segmentation: State of the art and future directions," Journal of Digital Imaging, vol. 30, no. 4, pp. 449-459, Jun. 2017. DOI: 10.1007/s10278-017-9983-4.
  11. J. Ker, L. Wang, J. Rao, and T. Lim, "Deep learning applications in medical image analysis", IEEE Access, vol. 6, pp. 9375-9389, Dec. 2017. DOI: 10.1109/ACCESS.2017.2788044.
  12. C. Liang, Y. Liu, M. Wu, F. Garcia-Castro, A. Alberich-Bayarri, and F. Wu, "Identifying pulmonary nodules or masses on chest radiography using deep learning: External validation and strategies to improve clinical practice," Clinical Radiology, vol. 75, no. 1, pp. 38-45, Jan. 2020. DOI: 10.1016/j.crad.2019.08.005.
  13. G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sanchez, "A survey on deep learning in medical image analysis," Medical Image Analysis, vol. 42, pp. 60-88, Dec. 2017. DOI: 10.1016/j.media.2017.07.005.
  14. D. Shen, G. Wu, and H. Suk, "Deep learning in medical image analysis," Annual Review of Biomedical Engineering, vol. 19, pp. 221-248, Jun. 2017. DOI: 10.1146/annurev-bioeng-071516-044442.
  15. D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, Nov. 2004. DOI: 10.1023/B:VISI.0000029664.99615.94.
  16. N. Dalal and B. Trigs, "Histograms of oriented gradients for human detection," in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego: CA, USA, pp. 886-893, 2005. DOI: 10.1109/CVPR.2005.177.
  17. A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope," International Journal of Computer Vision, vol. 42, pp. 145-175, May. 2001. DOI: 10.1023/A:1011139631724.
  18. V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. Springer-Verlag, 2000.
  19. A. Bosch, A. Zisserman, and X. Munoz, "Scene classification via plsa," in Proceedings of the European Conference on Computer Vision, Graz, Austria, pp. 517-530, 2006. DOI: 10.1007/11744085_40.
  20. T. Do, P. Lenca, and S. Lallich, "Classifying many-class high-dimensional fingerprint datasets using random forest of oblique decision trees," Vietnam Journal of Computer Science, vol. 2, pp. 3-12, Jun. 2014. DOI: 10.1007/s40595-014-0024-7.
  21. L. Fei-Fei and P. Perona, "A bayesian hierarchical model for learning natural scene categories," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego: CA, USA, pp. 524-531, 2005. DOI: 10.1109/CVPR.2005.16.
  22. Sivic and Zisserman, "Video Google: A text retrieval approach to object matching in videos," in 9th IEEE Intl Conference on Computer Vision, Nice, France, vol. 2, pp. 1470-1477, 2003. DOI: 10.1109/ICCV.2003.1238663.
  23. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11 pp. 2278-2324, Nov. 1998. DOI: 10.1109/5.726791.
  24. E. Kesim, Z. Dokur, and T. Olmez, "X-ray chest image classification by a small-sized convolutional neural network," in 2019 Scientific Meeting on Electrical-Electronics Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, pp. 1-5, 2019. DOI: 10.1109/EBBT.2019.8742050.
  25. C. Liu, Y. Cao, M. Alcantara, B. Liu, M. Brunette, J. Peinado, and W. Curioso, "TX-CNN: Detecting tuberculosis in chest x-ray images using convolutional neural network," in 2017 IEEE Intl Conference on Image Processing (ICIP), Beijing, China, pp. 2314-2318, 2017. DOI: 10.1109/ICIP.2017.8296695.
  26. V. Chouhan, S. K. Singh, A. Khamparia, D. Gupta, P. Tiwari, C. Moreira, R. Damasevicius, and V. H. C. de Albuquerque, "A novel transfer learning based approach for pneumonia detection in chest X-ray images," Applied Sciences, vol. 10, no. 2, p. 559, Jan. 2020. DOI: 10.3390/app10020559.
  27. P. Rajpurkar, J. Irvin, R. L. Ball, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. P. Langlotz, B. N. Patel, K. W. Yeom, K. Shpanskaya, F. G. Blankenberg, J. Seekins, T. J. Amrhein, D. A. Mong, S. S. Halabi, E. J. Zucker, A. Y. Ng, and M. P. Lungren, "Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists," PLOS Medicine, vol. 15, no. 11, p. e1002686, Nov. 2018. DOI: 10.1371/journal.pmed.1002686.
  28. A. Bhandary, G. A. Prabhu, V. Rajinikanth, K. P. Thanaraj, S. C. Satapathy, D. E. Robbins, C. Shasky, Y. Zhang, J. M. R. S. Tavares, and N. S. M. Raja, "Deep-learning framework to detect lung abnormality - A study with chest X-ray and lung CT scan images," Pattern Recognition Letters, vol. 129, pp. 271-278, Jan. 2020. DOI: 10.1016/j.patrec.2019.11.013.
  29. M. Wozniak, D. Polap, G. Capizzi, G. L. Sciuto, L. Kosmider, and K. Frankiewicz, "Small lung nodules detection based on local variance analysis and probabilistic neural network," Computer Methods and Programs in Biomedicine, vol. 161, pp. 173-180, Jul. 2018. DOI: 10.1016/j.cmpb.2018.04.025.
  30. E. Ayan and H. M. Unver, "Diagnosis of pneumonia from chest X-ray images using deep learning," in 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, pp. 1-5, 2019. DOI: 10.1109/EBBT.2019.8741582.
  31. S. S. Yadav and S. M. Jadhav, "Deep convolutional neural network based medical image classification for disease diagnosis," Journal of Big Data, vol. 6, p. 113, Dec. 2019. DOI: 10.1186/s40537-019-0276-2.
  32. C.L Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," arXiv:1512.00567, 2015. DOI: CoRR abs/1512.00567.
  33. F. Chollet, "Xception: Deep learning with depthwise separable convolutions," arXiv:1610.02357, 2016. DOI: CoRR abs/1610.02357.
  34. K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv:1409.1556, 2014. DOI: CoRR abs/1409.1556.
  35. P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K. N. Plataniotis, and A. Mohammadi, "COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images," Pattern Recognition Letters, vol. 138, pp. 638-643, Oct. 2020. DOI: 10.1016/j.patrec.2020.09.010Get rights and content.
  36. E. E. Hemdan, M. A. Shouman, and M. E. Karar, "COVIDX-Net: A framework of deep learning classifiers to diagnose COIVD-19 in X-ray images, arXiv:2003.11055, 2020. DOI: 10.48550/arXiv.2003.11055.
  37. G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu: HI, USA, pp. 2261-2269, 2017.
  38. K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," CoRR abs/1512.03385, 2015. DOI: 10.48550/arXiv.1512.03385.
  39. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, "MobileNetV2: Inverted residuals and linear bottlenecks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City: UT, USA, pp. 4510-4520, 2018.
  40. H. S. Maghdid, A. T. Asaad, K. Z. Ghafoor, A. S. Sadiq, and M. K. Khan, "Diagnosing COIVD-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms," arXiv:2004.00038, p. 26, 2021. DOI: 10.48550/arXiv.2004.00038.
  41. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Communication of the ACM, vol. 60, no. 6, pp. 84-90, Jun. 2017. DOI: 10.1145/3065386.
  42. L. Wang, Z. Q. Lin, and A. Wong, "COVID-Net: A tailored deep convolutional neural network design for detection of COIVD-19 cases from chest X-ray images," Scientific Reports, vol. 10, p. 19549, Nov. 2020. DOI: 10.1038/s41598-020-76550-z.
  43. F. Ucar and D. Korkmaz, "COVIDidiagnosis-Net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COIVD-19) from X-ray images," Medical Hypotheses, vol. 140, p. 109761, Jul. 2020. DOI: 10.1016/j.mehy.2020.109761.
  44. F. N. Iandola, S. Han, M. W. Moskewicz, K. Asraf, W. J. Dally, and K. Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size," arXiv:1602.07360, 2016. DOI: 10.48550/arXiv.1602.07360.
  45. A. Narin, C. Kaya, and Z. Pamuk, "Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks, Pattern Analysis and Applications, vol. 24, no. 3, pp. 1207-1220, May. 2021. DOI: 10.1007/s10044-021-00984-y.
  46. M. Togacar, B. Ergen, and Z. Comert, "COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches," Computers in Biology and Medicine, vol. 121, p. 103805, Jun. 2020. DOI: 10.1016/j.compbiomed.2020.103805.
  47. I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks," Physical and Engineering Sciences in Medicine, vol. 43, no. 2, pp. 635-640, Apr. 2020. DOI: 10.1007/s13246-020-00865-4.
  48. V. Enireddy, M. J. K. Kumar, B. Donepudi, and C. Karthikeyan, "Detection of COVID-19 using hybrid ResNet and SVM," in Proceedings of IOP Conference Series: Materials Science and Engineering, Kancheepuram, India, vol. 993, no. 1, 2020.
  49. J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. Q. Duong, and M. Ghassemi, "COVID-19 image data collection: Prospective predictions are the future," arXiv: 2006.11988, 2020. DOI: 10.48550/arXiv.2006.11988.
  50. A. Haghanifa, M. M. Majdabadi, and S. Ko, "COVID-19 chest X-ray image repository," May. 2021. DOI: 10.6084/m9.figshare.12580328.v3.
  51. H. B. Winther, H. Laser, S. Gerbel, S. K. Maschke, J. B. Hinrichs, J. Vogel-Claussen, F. K. Wacker, M. M. Hoper, and B. C. Meyer, "Dataset: Covid-19 image repository," 2020.
  52. M. de la Iglesia Baya, J. M. Saborit, J. A. Montell, A. Pertusa, A. Bustos, M. Cazorla, J. Galant, X. Barber, D. Orozco-Beltran, F. Garcia-Garcia, M. Caparros, G. Gonzalez, and J. M. Salinas, "BIMCV COVID-19+: A large annotated dataset of RX and CT images from COVID-19 patients," arXiv:2006.01174v3, 2021. DOI: 10.48550/arXiv.2006.01174.
  53. D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S. L Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K. Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V. A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A. Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, and K. Zhang, "Identifying medical diagnoses and treatable diseases by image-based deep learning," Cell, vol. 172, no. 5, pp. 1122-1131.e9, Feb. 2018. DOI: 10.1016/j.cell.2018.02.010.
  54. J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, "What does classifying more than 10,000 image categories tell us?," in Computer Vision - ECCV 2010 - 11th European Conference on Computer Vision, Heraklion, Crete, Greece, pp. 71-84, 2010. DOI: 10.1007/978-3-642-15555-0_6.
  55. A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2014, Columbus: OH, USA, pp. 512-519, 2014.
  56. J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features in deep neural networks?," in Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal: QC, Canada, pp. 3320-3328, 2014.
  57. Keras (2015) [Online]. Available: https://keras.io.
  58. M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Godfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: Large-scale machine learning on heterogeneous distributed systems," arXiv:1603.04467v2, 2015. DOI: 10.48550/arXiv.1603.04467.
  59. F. Bedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, and E. Duchesnay, "Scikit-learn: Machine learning in python," Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825-2830, 2011.
  60. Itseez: Open-source computer vision library. (2015) [Online]. Available: https://github.com/opencv/opencv.