References
- C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, and B. Cao, "Clinical features of patients infected with 2019 novel coronavirus in wuhan, china," The Lancet, vol. 395, no. 10223, pp. 497-506, Feb. 2020. DOI: 10.1016/S0140-6736(20)30183-5.
- Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K. S. M. Leung, E. H. Y. Lau, J. Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Tao, Y. Yang, Z. Deng, B. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. Y. Lam, J. T. Wu, G. F. Gao, B. J. Cowling, B. Yang, G. M. Leung, and Z. Feng, "Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia," New England Journal of Medicine, vol. 382, pp. 1199-1207, Mar. 2020. DOI: 10.1056/NEJMoa2001316.
- F. Wu, S. Zhao, B. Yu, Y. Chen, W. Wang, Z. Song, Y. Hu, Z. Tao, J. Tian, Y. Pei, M. Yuan, Y. Zhang, F. Dai, Y. Liu, Q. Wang, J. Zheng, L. Xu, E. C. Holmes, and Y. Zhang, "A new coronavirus associated with human respiratory disease in China," Nature, vol. 579, pp. 1-8, Feb. 2020. DOI: 10.1038/s41586-020-2008-3.
- N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, D. Wang, W. Xu, G. Wu, G. F. Gao, D. Phil., and W. Tan, "A novel coronavirus from patients with pneumonia in China, 2019," New England Journal of Medicine, vol. 382, pp. 727-733, Feb. 2020. DOI: 10.1056/NEJMoa2001017.
- I. Arevalo-Rodriguez, D. Buitrago-Garcia, D. Simancas-Racines, P. Zambrano-Achig, R. D. Campo, A. Ciapponi, O. Sued, L. Martines-Garcia, A. W. Rutjes, N. Low, P. M. Bossuyt, J. A. Perez-Molina, and J. Zamora, "False-negative results of initial rt-pcr assays for covid-19: A systematic review," PLoS One, vol. 15, no. 12, p. e0242958, Dec. 2020. DOI: 10.1371/journal.pone.0242958.
- J. F. Chan, S. Yuan, K. Kok, K. K. To, H. Chu, J. Yang, F. Xing, J. Liu, C. C. Yip, R. W. Poon, H. Tsoi, S. K. Lo, K. Chan, V. K. Poon, W. Chan, J. D. Ip, J. Cai, Y. C. Cheng, H. Chen, C. K. Hui, and K. Yuen, "A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster," The Lancet, vol. 395, no. 10223, pp. 514-523, Feb. 2020. DOI: 10.1016/S0140-6736(20)30154-9.
- W. Hao and M. Li, "Clinical diagnostic value of CT imaging in COVID-19 with multiple negative RT-PCR testing," Travel Medicine and Infectious Disease, vol. 34, p. 101627, Mar.-Apr. 2020. DOI: 10.1016/j.tmaid.2020.101627.
- P. Huang, T. Liu, L. Huang, H. Liu, M. Lei, W. Xu, X. Hu, J. Chen, and B. Liu, "Use of chest ct in combination with negative RT-PCR assay for the 2019 novel coronavirus but high clinical suspicion," Radiology, vol. 295, no. 1, pp. 22-23, Apr. 2020. DOI: 10.1148/radiol.2020200330.
- X. Xie, Z. Zhong, W. Zhong, W. Zhao, C. Zheng, F. Wang, and J. Liu, "Chest CT for typical coronavirus disease 2019 (COVID-19) pneumonia: Relationship to negative RT-PCR testing," Radiology, vol. 296, no. 2, pp. E41-E45, Feb. 2020. DOI: 10.1148/radiol.2020200343.
- Z. Akkus, A. Galimzianova, A. Hoogi, D. L. Rubin, and B. J. Erickson, "Deep learning for brain MRI segmentation: State of the art and future directions," Journal of Digital Imaging, vol. 30, no. 4, pp. 449-459, Jun. 2017. DOI: 10.1007/s10278-017-9983-4.
- J. Ker, L. Wang, J. Rao, and T. Lim, "Deep learning applications in medical image analysis", IEEE Access, vol. 6, pp. 9375-9389, Dec. 2017. DOI: 10.1109/ACCESS.2017.2788044.
- C. Liang, Y. Liu, M. Wu, F. Garcia-Castro, A. Alberich-Bayarri, and F. Wu, "Identifying pulmonary nodules or masses on chest radiography using deep learning: External validation and strategies to improve clinical practice," Clinical Radiology, vol. 75, no. 1, pp. 38-45, Jan. 2020. DOI: 10.1016/j.crad.2019.08.005.
- G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and C. I. Sanchez, "A survey on deep learning in medical image analysis," Medical Image Analysis, vol. 42, pp. 60-88, Dec. 2017. DOI: 10.1016/j.media.2017.07.005.
- D. Shen, G. Wu, and H. Suk, "Deep learning in medical image analysis," Annual Review of Biomedical Engineering, vol. 19, pp. 221-248, Jun. 2017. DOI: 10.1146/annurev-bioeng-071516-044442.
- D. G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, vol. 60, pp. 91-110, Nov. 2004. DOI: 10.1023/B:VISI.0000029664.99615.94.
- N. Dalal and B. Trigs, "Histograms of oriented gradients for human detection," in Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego: CA, USA, pp. 886-893, 2005. DOI: 10.1109/CVPR.2005.177.
- A. Oliva and A. Torralba, "Modeling the shape of the scene: A holistic representation of the spatial envelope," International Journal of Computer Vision, vol. 42, pp. 145-175, May. 2001. DOI: 10.1023/A:1011139631724.
- V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. Springer-Verlag, 2000.
- A. Bosch, A. Zisserman, and X. Munoz, "Scene classification via plsa," in Proceedings of the European Conference on Computer Vision, Graz, Austria, pp. 517-530, 2006. DOI: 10.1007/11744085_40.
- T. Do, P. Lenca, and S. Lallich, "Classifying many-class high-dimensional fingerprint datasets using random forest of oblique decision trees," Vietnam Journal of Computer Science, vol. 2, pp. 3-12, Jun. 2014. DOI: 10.1007/s40595-014-0024-7.
- L. Fei-Fei and P. Perona, "A bayesian hierarchical model for learning natural scene categories," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego: CA, USA, pp. 524-531, 2005. DOI: 10.1109/CVPR.2005.16.
- Sivic and Zisserman, "Video Google: A text retrieval approach to object matching in videos," in 9th IEEE Intl Conference on Computer Vision, Nice, France, vol. 2, pp. 1470-1477, 2003. DOI: 10.1109/ICCV.2003.1238663.
- Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11 pp. 2278-2324, Nov. 1998. DOI: 10.1109/5.726791.
- E. Kesim, Z. Dokur, and T. Olmez, "X-ray chest image classification by a small-sized convolutional neural network," in 2019 Scientific Meeting on Electrical-Electronics Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, pp. 1-5, 2019. DOI: 10.1109/EBBT.2019.8742050.
- C. Liu, Y. Cao, M. Alcantara, B. Liu, M. Brunette, J. Peinado, and W. Curioso, "TX-CNN: Detecting tuberculosis in chest x-ray images using convolutional neural network," in 2017 IEEE Intl Conference on Image Processing (ICIP), Beijing, China, pp. 2314-2318, 2017. DOI: 10.1109/ICIP.2017.8296695.
- V. Chouhan, S. K. Singh, A. Khamparia, D. Gupta, P. Tiwari, C. Moreira, R. Damasevicius, and V. H. C. de Albuquerque, "A novel transfer learning based approach for pneumonia detection in chest X-ray images," Applied Sciences, vol. 10, no. 2, p. 559, Jan. 2020. DOI: 10.3390/app10020559.
- P. Rajpurkar, J. Irvin, R. L. Ball, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding, A. Bagul, C. P. Langlotz, B. N. Patel, K. W. Yeom, K. Shpanskaya, F. G. Blankenberg, J. Seekins, T. J. Amrhein, D. A. Mong, S. S. Halabi, E. J. Zucker, A. Y. Ng, and M. P. Lungren, "Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists," PLOS Medicine, vol. 15, no. 11, p. e1002686, Nov. 2018. DOI: 10.1371/journal.pmed.1002686.
- A. Bhandary, G. A. Prabhu, V. Rajinikanth, K. P. Thanaraj, S. C. Satapathy, D. E. Robbins, C. Shasky, Y. Zhang, J. M. R. S. Tavares, and N. S. M. Raja, "Deep-learning framework to detect lung abnormality - A study with chest X-ray and lung CT scan images," Pattern Recognition Letters, vol. 129, pp. 271-278, Jan. 2020. DOI: 10.1016/j.patrec.2019.11.013.
- M. Wozniak, D. Polap, G. Capizzi, G. L. Sciuto, L. Kosmider, and K. Frankiewicz, "Small lung nodules detection based on local variance analysis and probabilistic neural network," Computer Methods and Programs in Biomedicine, vol. 161, pp. 173-180, Jul. 2018. DOI: 10.1016/j.cmpb.2018.04.025.
- E. Ayan and H. M. Unver, "Diagnosis of pneumonia from chest X-ray images using deep learning," in 2019 Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT), Istanbul, Turkey, pp. 1-5, 2019. DOI: 10.1109/EBBT.2019.8741582.
- S. S. Yadav and S. M. Jadhav, "Deep convolutional neural network based medical image classification for disease diagnosis," Journal of Big Data, vol. 6, p. 113, Dec. 2019. DOI: 10.1186/s40537-019-0276-2.
- C.L Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, "Rethinking the inception architecture for computer vision," arXiv:1512.00567, 2015. DOI: CoRR abs/1512.00567.
- F. Chollet, "Xception: Deep learning with depthwise separable convolutions," arXiv:1610.02357, 2016. DOI: CoRR abs/1610.02357.
- K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," arXiv:1409.1556, 2014. DOI: CoRR abs/1409.1556.
- P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K. N. Plataniotis, and A. Mohammadi, "COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images," Pattern Recognition Letters, vol. 138, pp. 638-643, Oct. 2020. DOI: 10.1016/j.patrec.2020.09.010Get rights and content.
- E. E. Hemdan, M. A. Shouman, and M. E. Karar, "COVIDX-Net: A framework of deep learning classifiers to diagnose COIVD-19 in X-ray images, arXiv:2003.11055, 2020. DOI: 10.48550/arXiv.2003.11055.
- G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, "Densely connected convolutional networks," in Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu: HI, USA, pp. 2261-2269, 2017.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," CoRR abs/1512.03385, 2015. DOI: 10.48550/arXiv.1512.03385.
- M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen, "MobileNetV2: Inverted residuals and linear bottlenecks," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City: UT, USA, pp. 4510-4520, 2018.
- H. S. Maghdid, A. T. Asaad, K. Z. Ghafoor, A. S. Sadiq, and M. K. Khan, "Diagnosing COIVD-19 pneumonia from X-ray and CT images using deep learning and transfer learning algorithms," arXiv:2004.00038, p. 26, 2021. DOI: 10.48550/arXiv.2004.00038.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Communication of the ACM, vol. 60, no. 6, pp. 84-90, Jun. 2017. DOI: 10.1145/3065386.
- L. Wang, Z. Q. Lin, and A. Wong, "COVID-Net: A tailored deep convolutional neural network design for detection of COIVD-19 cases from chest X-ray images," Scientific Reports, vol. 10, p. 19549, Nov. 2020. DOI: 10.1038/s41598-020-76550-z.
- F. Ucar and D. Korkmaz, "COVIDidiagnosis-Net: Deep bayes-squeezenet based diagnosis of the coronavirus disease 2019 (COIVD-19) from X-ray images," Medical Hypotheses, vol. 140, p. 109761, Jul. 2020. DOI: 10.1016/j.mehy.2020.109761.
- F. N. Iandola, S. Han, M. W. Moskewicz, K. Asraf, W. J. Dally, and K. Keutzer, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size," arXiv:1602.07360, 2016. DOI: 10.48550/arXiv.1602.07360.
- A. Narin, C. Kaya, and Z. Pamuk, "Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks, Pattern Analysis and Applications, vol. 24, no. 3, pp. 1207-1220, May. 2021. DOI: 10.1007/s10044-021-00984-y.
- M. Togacar, B. Ergen, and Z. Comert, "COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches," Computers in Biology and Medicine, vol. 121, p. 103805, Jun. 2020. DOI: 10.1016/j.compbiomed.2020.103805.
- I. D. Apostolopoulos and T. A. Mpesiana, "Covid-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks," Physical and Engineering Sciences in Medicine, vol. 43, no. 2, pp. 635-640, Apr. 2020. DOI: 10.1007/s13246-020-00865-4.
- V. Enireddy, M. J. K. Kumar, B. Donepudi, and C. Karthikeyan, "Detection of COVID-19 using hybrid ResNet and SVM," in Proceedings of IOP Conference Series: Materials Science and Engineering, Kancheepuram, India, vol. 993, no. 1, 2020.
- J. P. Cohen, P. Morrison, L. Dao, K. Roth, T. Q. Duong, and M. Ghassemi, "COVID-19 image data collection: Prospective predictions are the future," arXiv: 2006.11988, 2020. DOI: 10.48550/arXiv.2006.11988.
- A. Haghanifa, M. M. Majdabadi, and S. Ko, "COVID-19 chest X-ray image repository," May. 2021. DOI: 10.6084/m9.figshare.12580328.v3.
- H. B. Winther, H. Laser, S. Gerbel, S. K. Maschke, J. B. Hinrichs, J. Vogel-Claussen, F. K. Wacker, M. M. Hoper, and B. C. Meyer, "Dataset: Covid-19 image repository," 2020.
- M. de la Iglesia Baya, J. M. Saborit, J. A. Montell, A. Pertusa, A. Bustos, M. Cazorla, J. Galant, X. Barber, D. Orozco-Beltran, F. Garcia-Garcia, M. Caparros, G. Gonzalez, and J. M. Salinas, "BIMCV COVID-19+: A large annotated dataset of RX and CT images from COVID-19 patients," arXiv:2006.01174v3, 2021. DOI: 10.48550/arXiv.2006.01174.
- D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang, S. L Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K. Prasadha, J. Pei, M. Y. L. Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng, R. Hou, W. Shi, X. Fu, Y. Duan, V. A. N. Huu, C. Wen, E. D. Zhang, C. L. Zhang, O. Li, X. Wang, M. A. Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia, and K. Zhang, "Identifying medical diagnoses and treatable diseases by image-based deep learning," Cell, vol. 172, no. 5, pp. 1122-1131.e9, Feb. 2018. DOI: 10.1016/j.cell.2018.02.010.
- J. Deng, A. C. Berg, K. Li, and L. Fei-Fei, "What does classifying more than 10,000 image categories tell us?," in Computer Vision - ECCV 2010 - 11th European Conference on Computer Vision, Heraklion, Crete, Greece, pp. 71-84, 2010. DOI: 10.1007/978-3-642-15555-0_6.
- A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, "CNN features off-the-shelf: An astounding baseline for recognition," in IEEE Conference on Computer Vision and Pattern Recognition, CVPR Workshops 2014, Columbus: OH, USA, pp. 512-519, 2014.
- J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, "How transferable are features in deep neural networks?," in Advances in Neural Information Processing Systems 27 (NIPS 2014), Montreal: QC, Canada, pp. 3320-3328, 2014.
- Keras (2015) [Online]. Available: https://keras.io.
- M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Godfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: Large-scale machine learning on heterogeneous distributed systems," arXiv:1603.04467v2, 2015. DOI: 10.48550/arXiv.1603.04467.
- F. Bedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, and E. Duchesnay, "Scikit-learn: Machine learning in python," Journal of Machine Learning Research, vol. 12, no. 85, pp. 2825-2830, 2011.
- Itseez: Open-source computer vision library. (2015) [Online]. Available: https://github.com/opencv/opencv.