DOI QR코드

DOI QR Code

Simulation of porous claddings using LES and URANS: A 5:1 rectangular cylinder

  • Received : 2022.02.19
  • Accepted : 2022.06.29
  • Published : 2022.07.25

Abstract

While the aerodynamics of solid bluff bodies is reasonably well-understood and methodologies for their reliable numerical simulation are available, the aerodynamics of porous bluff bodies formed by assembling perforated plates has received less attention. The topic is nevertheless of great technical interest, due to their ubiquitous presence in applications (fences, windbreaks and double skin facades to name a few). This work follows previous investigations by the authors, aimed at verifying the consistency of numerical simulations based on the explicit modelling of the perforated plates geometry and their representation by means of pressure-jumps. In this work we further expand such investigations and, contextually, we provide insight into the flow arrangement and its sensitivity to important modelling and setup configurations. To this purpose, Unsteady Reynolds-Averaged Navier-Stokes (URANS) and Large-Eddy Simulations (LES) are performed for a 5:1 rectangular cylinder at null angle of attack. Then, using URANS, porosity and attack angle are simultaneously varied. To the authors' knowledge this is the first time in which LES are used to model a porous bluff body and compare results obtained using the explicit modelling approach to those obtained relying on pressure-jumps. Despite the flow organization often shows noticeable differences, good agreement is found between the two modelling strategies in terms of drag force.

Keywords

References

  1. Allori, D., Bartoli, G. and Mannini, C. (2013), "Wind tunnel tests on macro-porous structural elements: A scaling procedure", J. Wind Eng. Ind. Aerod., 123, 291-299. https://doi.org/10.1016/j.jweia.2013.09.011
  2. Annand, W. (1953), "The resistance to air flow of wire gauzes", Aeronautic. J., 57, 141-146. https://doi.org/10.1017/S036839310013007X.
  3. Azizi, F. and Al Taweel, A. (2011), "Hydrodynamics of liquid flow through screens and screen-type static mixers", Chemical Eng. Commun., 198, 726-742. https://doi.org/10.1080/00986445.2011.532748.
  4. Belloli, M., Rosa, L. and Zasso, A. (2014), "Wind loads and vortex shedding analysis on the effects of the porosity on a high slender tower", J. Wind Eng. Ind. Aerod., 126, 75-86. https://doi.org/10.1016/j.jweia.2014.01.004.
  5. Bofah, K. and Al-Hinai, K. (1986), "Field tests of porous fences in the regime of sand-laden wind", J. Wind Eng. Ind. Aerod., 23, 309-319. https://doi.org/10.1016/0167-6105(86)90051-6.
  6. Bruno, L., Fransos, D., Coste, N. and Bosco, A. (2010), "3D flow around a rectangular cylinder: a computational study", J. Wind Eng. Ind. Aerod., 98(6-7), 263-276. https://doi.org/10.1016/j.jweia.2009.10.005.
  7. Bruno, L., Fransos, D. And Giudice, A.L. (2018), "Solid barriers for windblown sand mitigation: Aerodynamic behavior and conceptual design guidelines", J. Wind Eng. Ind. Aerod., 173, 79-90. https://doi.org/10.1016/j.jweia.2017.12.005.
  8. Bruno, L., Salvetti, M.V. and Ricciardelli, F. (2014), "Benchmark on the aerodynamics of a rectangular 5: 1 cylinder: An overview after the first four years of activity", J. Wind Eng. Ind. Aerod., 126, 87-106. https://doi.org/10.1016/j.jweia.2014.01.005.
  9. Buljac, A., Kozmar, H., Pospisil, S. and Machacek, M. (2017), "Aerodynamic and aeroelastic charac teristics of typical bridge decks equipped with wind barriers at the windward bridge-deck edge", Eng. Struct., 137, 310-322. https://doi.org/10.1016/j.engstruct.2017.01.055.
  10. Buljac, A., Kozmar, H., Pospisil, S., Machacek, M. and Kuznetsov, S. (2020), "Effects of wind-barrier layout and wind turbulence on aerodynamic stability of cable-supported bridges", J. Bridge Eng., 25, 04020102. https://doi.org/ 10.1061/(ASCE)BE.1943-5592.0001631.
  11. Cabezon, D., Migoya, E. and Crespo, A. (2011), "Comparison of turbulence models for the computational fluid dynamics simulation of wind turbine wakes in the atmospheric boundary layer", Wind Energy, 14, 909-921. https://doi.org/10.1002/we.516.
  12. Cheli, F., Ripamonti, F., Sabbioni, E. and Tomasini, G. (2011), "Wind tunnel tests on heavy road vehicles: cross wind induced loads-part 2", J. Wind Eng. Ind. Aerod., 99, 1011-1024. https://doi.org/10.1016/j.jweia.2011.07.007.
  13. Chu, C.R., Chang, C.Y., Huang, C.J., Wu, T.R., Wang, C.Y. and Liu, M.Y. (2013), "Windbreak protection for road vehicles against crosswind", J. Wind Eng. Ind. Aerod., 116, 61-69. https://doi.org/10.1016/j.jweia.2013.02.001
  14. Collar, A. (1939), The Effect of a Gauze on the Velocity Distribution in a Uniform duct. r. & m. no. 1867, British ARC .
  15. Dalpe, B. and Masson, C. (2008), "Numerical study of fully developed turbulent flow within and above a dense forest", Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 11, 503-515. https://doi.org/10.1002/we.271.
  16. Dryden, H.L. and Schubauer, G. (1947), "The use of damping screens for the reduction of wind-tunnel turbulence", J. Aeronautic. Sci., 14, 221-228. https://doi.org/10.2514/8.1324
  17. Durhasan, T., Pinar, E., Ozkanc, G., Akilli, H. and Sahin, B. (2019), "The effect of shroud on vortex shedding mechanism of cylinder", J. Wind Eng. Ind. Aerod., 84, 51-61. https://doi.org/10.1016/j.apor.2019.01.007.
  18. Eckert, B. and Pfluger, F. (1942), The Resistance Coefficient of Commercial Round Wire Grids.
  19. Fang, F.M. and Wang, D. (1997), "On the flow around a vertical porous fence", J. Wind Eng. Ind. Aerod., 67, 415-424. https://doi.org/10.1016/S0167-6105(97)00090-1.
  20. Forces, E.F. (1998), Estimation of Shelter Provided by Solid and Porous Fences. Engineering Science Data Item.
  21. Galbraith, R.M. (1981), "Aspects of the flow in the immediate vicinity of a porous shroud", J. Wind Eng. Ind. Aerod., 8, 251-258. https://doi.org/10.1016/0167-6105(81)90024-6.
  22. Hu, G., Hassanli, S., Kwok, K.C. and Tse, K.T. (2017), "Windinduced responses of a tall building with a double-skin facade system", J. Wind Eng. Ind. Aerod., 168, 91-100. https://doi.org/10.1016/j.jweia.2017.05.008.
  23. Huang, L.M., Chan, H.C. and Lee, J.T. (2012), "A numerical study on flow around nonuniform porous fences", J. Appl. Mathem. 2012. https://doi.org/10.1155/2012/268371
  24. Jacobs, A.F. (1985), "The normal-force coefficient of a thin closed fence", Bound. Lay. Meteorol., 32, 329-335. https://doi.org/10.1007/BF00121998.
  25. Kemper, F. and Feldmann, M. (2019), "Wind load assumptions for permeable cladding elements considering the installation context", J. Wind Eng. Ind. Aerod., 184, 277-288. https://doi.org/10.1016/j.jweia.2018.10.011
  26. Kosutova, K., van Hooff, T., Vanderwel, C., Blocken, B. and Hensen, J. (2019), "Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and cfd simulations", Build. Environ., 154, 263-280. https://doi.org/10.1016/j.buildenv.2019.03.019.
  27. Kozmar, H., Procino, L., Borsani, A. and Bartoli, G. (2014), "Optimizing height and porosity of roadway wind barriers for viaducts and bridges", Eng. Struct., 81, 49-61. https://doi.org/10.1016/j.engstruct.2014.09.029.
  28. Lee, S.J. and Lim, H.C. (2001), "A numerical study on flow around a triangular prism located behind a porous fence", Fluid Dyn. Res., 28, 209. https://doi.org/10.1016/S0169-5983(00)00030-7/meta.
  29. Lo, Y.L., Wu, Y.T., Fu, C.L. and Yu, Y.C. (2020), "Wind load reduction effects on inner buildings by exterior porous facades", Build. Environ., 183, 107148. https://doi.org/10.1016/j.buildenv.2020.107148.
  30. Mariotti, A., Siconolfi, L. and Salvetti, M.V. (2017), "Stochastic sensitivity analysis of large-eddy simulation predictions of the flow around a 5: 1 rectangular cylinder", Europ. J. Mech. B/Fluids 62, 149-165. https://doi.org/10.1016/j.euromechflu.2016.12.008.
  31. Park, C.W. and Lee, S.J. (2003), "Experimental study on surface pressure and flow structure around a triangular prism located behind a porous fence", J. Wind Eng. Ind. Aerod., 91, 165-184. https://doi.org/10.1016/S0167-6105(02)00343-4.
  32. Pomaranzi, G., Amerio, L., Schito, P., Lamberti, G., Gorle, C. and Zasso, A. (2022), "Wind tunnel pressure data analysis for peak cladding load estimation on a high-rise building", J. Wind Eng. Ind. Aerod., 220, 104855. https://doi.org/10.1016/j.jweia.2021.104855.
  33. Pomaranzi, G., Bistoni, O., Schito, P., Rosa, L. and Zasso, A. (2021a), "Wind effects on a permeable double skin facade, the ENI head office case study", Fluids 6, 415. https://doi.org/10.3390/fluids6110415.
  34. Pomaranzi, G., Bistoni, O., Schito, P. and Zasso, A. (2021b), "Numerical modelling of three-dimensional screens, treated as porous media", Wind Struct., 33, 409-422. https://doi.org/10.12989/was.2021.33.5.409.
  35. Pomaranzi, G., Daniotti, N., Schito, P., Rosa, L. and Zasso, A. (2020), "Experimental assessment of the effects of a porous double skin facade system on cladding loads", J. Wind Eng. Ind. Aerod., 196, 104019. https://doi.org/10.1016/j.jweia.2019.104019.
  36. Prandtl, L. (1933), Attaining a Steady Air Stream in Wind Tunnels.
  37. Price, P. (1956), "Suppression of the fluid-induced vibration of circular cylinders", J. Eng. Mech. Div., 82, 1030-1031. https://doi.org/10.1061/JMCEA3.0000008.
  38. Raju, K.R., Garde, R., Singh, S. and Singh, N. (1988), "Experimental study on characteristics of flow past porous fences", J. Wind Eng. Ind. Aerod., 29, 155-163. https://doi.org/10.1016/0167-6105(88)90154-7.
  39. Rocchio, B., Mariotti, A. and Salvetti, M. (2020), "Flow around a 5: 1 rectangular cylinder: Effects of upstream-edge rounding", J. Wind Eng. Ind. Aerod., 204, 104237. https://doi.org/10.1016/j.jweia.2020.104237.
  40. Schubauer, G.B., Spangenberg, W.G. and Klebanoff, P. (1950), Aeodynamic Characteristics of Damping Screens. Technical Report. National Aeronautics and Space Administration Washington DC.
  41. Shaw, R.H. and Schumann, U. (1992), "Large-eddy simulation of turbulent flow above and within a forest", Bound. Lay. Meteorol., 61, 47-64. https://doi.org/10.1007/BF02033994.
  42. Shih, T.H. (1993), "A Realizable Reynolds Stress Algebraic Equation Model (Vol. 105993). National Aeronautics and Space Administration, Washington, D.C., United States.
  43. Shih, T.H., Liou, W.W., Shabbir, A., Yang, Z. and Zhu, J., 1995. A new k-∈ eddy viscosity model for high Reynolds number turbulent flows. Computers & fluids, 24(3), 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  44. Sturge, D., Sobotta, D., Howell, R., While, A. and Lou, J. (2015), "A hybrid actuator disc-full rotor cfd methodology for modelling the effects of wind turbine wake interactions on performance", Renew. Energy, 80, 525-537. https://doi.org/10.1016/j.renene.2015.02.053.
  45. Taylor, G., Batchelor, G., Dryden, H. and Schubauer, G. (1949), "The effect of wire gauze on small disturbances in a uniform stream", Quart. J. Mech. Appl. Mathem., 2, 1-29. https://doi.org/10.1093/qjmam/2.1.1.
  46. Walshe, D. and Wooton, L. (1970), "Preventing wind-induced oscillations of structures of circular section", Proceedings of the Institution of Civil Engineers 47, 1-24. https://doi.org/10.1680/iicep.1970.6689.
  47. Wieghardt, K. (1953), "On the resistance of screens", Aeronautic. Quart., 4, 186-192. https://doi.org/10.1017/S0001925900000871.
  48. Wong, H. and Kokkalis, A. (1982), "A comparative study of three aerodynamic devices for suppressing vortex-induced oscillation", J. Wind Eng. Ind. Aerod., 10, 21-29. https://doi.org/10.1016/0167-6105(82)90051-4.
  49. Xu, M., Patruno, L., Lo, Y.L. and de Miranda, S. (2020), "On the use of the pressure jump approach for the simulation of separated external flows around porous structures: A forward facing step", J. Wind Eng. Ind. Aerod., 207, 104377. https://doi.org/10.1016/j.jweia.2020.104377.
  50. Xu, M., Patruno, L., Lo, Y.L. and de Miranda, S. (2022), "On the numerical simulation of perforated bluff-bodies: a CFD study on a hollow porous 5:1 rectangular cylinder", Wind Struct., 34, 1. https://doi.org/10.12989/was.2022.34.1.001.
  51. Yoshizawa, A. (1986), "Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling", Phys. Fluids, 29, 2152-2164. https://doi.org/10.1063/1.865552.