Acknowledgement
We thank the Faculty of Mechanical Engineering of Kashan Azad University for cooperating and providing equipment related to the laboratory.
References
- Abbas, M.R., Uday, M.B., Noor, A.M., Ahmad, N. and Rajoo, S. (2016), "Microstructural evaluation of a slurry based Ni/YSZ thermal barrier coating for automotive turbocharger turbine application", Mat. Design, 109, 47-56, https://doi.org/10.1016/j.matdes.2016.07.070.
- Aghaali, H., Angstrom, H. and Serrano Cruz, J.R. (2015), "Evaluation of different heat transfer conditions on an automotive turbocharger", Int. J. Eng. Res., 16(2), 137-151, https://doi.org/10.1177/1468087414524755.
- Burke, R.D., Copeland, C.D, Duda, T. and Rayes-Belmonte, M.A. (2016), "Lumped capacitance and three-dimensional computational fluid dynamics conjugate heat transfer modelingof an automotive turbocharger", J. Eng. Gas Turb. Power, 138, 092602. https://doi.org/10.1115/1.4032663.
- Chen, D., Chu, Z.M. and Zhang, Q. (2013), "Analysis of several test methods about heat insulation capabilities of ceramic thermal barrier coatings", Phys. Proced., 50, 248-52, https://doi.org/10.1016/j.phpro.2013.11.039.
- Diaz, P.M. (2017), "Efficiency of nano ceramic coated and turbocharged internal combustion engine-A review", J. Adv. Mech. Eng. Sci., 3(1). 1-3. https://doi.org/10.18831/james.in/2017011001.
- Dimelow, A. (2018), "Transient conjugate heat transfer analysis of a turbocharger", Cummins Turbo Techn., 22, 132-144. https://doi.org/10.2514/6.2006-3264.
- Gier, T.S., Biesinger, T. and Eickenbusch, H. (2018), "Heat Transfer Coefficients in a Turbocharger With and Without Boiling", Universitatsbibliothek der RWTH Aachen.
- Han, F., Mao, Y. and Tan, J. (2016), "Influences of flow loss and inlet distortions from radial inlets on the performances of centrifugal compressor stages", J. Mech. Sci. Technol., 10, 4591-4599. https://doi.org/10.1007/s12206-016-0930-y.
- Huang, L., Ma, C., Li, Y., Gao, J. and Qi, M. (2019), "Applying neural networks (NN) to the improvement of gasoline turbocharger heat transfer modeling", Appl. Therm. Eng., 141, 1080-1091. https://doi.org/10.1016/j.applthermaleng.2018.06.062.
- Jiaqiang, E., Zhang, Zh., Tu, Zh., Zuo, W., Hu, W., Han, D. and Jin, Y. (2018), "Effect analysis on flow and boiling heat transfer performance of cooling water-jacket of bearing in the gasoline engine turbocharger", Appl. Therm. Eng., 130, 754-766, https://doi.org/10.1016/j.applthermaleng.2017.11.070.
- Lata, P. and Kaur. (2021), "Interactions in a homogeneous isotropic modified couple stress thermoelastic solid with multidual- phase-lag heat transfer and two temperature", Steel Compos. Struct., 38, 213-221. http://dx.doi.org/10.12989/scs.2021.38.2.213.
- Lata, P. and Singh, K. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dualphase lag heat transfer", Steel Compos. Struct., 38, 141-150. http://dx.doi.org/10.12989/scs.2021.38.2.141.
- Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35, 341-351. http://dx.doi.org/10.12989/scs.2020.35.3.343.
- Launder, B.E. and Spalding, B. (1974), "The numerical computation of turbulent flows", Comput. Methods Appl. Mech. Eng., 3, 269-289. https://doi.org/10.1016/0045-7825(74)90029-2.
- Marelli, S., Marmorato, G. and Capobianco, M. (2016), "Evaluation of heat transfer eects in small turbochargers by theoretical model and its experimental validation", Energy, 112, 264-272, https://doi.org/10.1016/j.energy.2016.06.067.
- Savic, B., Gao, X. and Baar, R. (2018), "Turbocharger heat transfer determination with a power based phenomenological approach and a CHT validation", J. Turbomach., 33, 544-551. https://doi.org/10.1115/1.4041806.
- Schinner, M., Seume, J., Ehrhard, J. and Bogner, M. (2017), "Heat transfer correction methods for turbocharger performance measurements", J. Eng. Gas Turb. Power, 139, 022602-1. https://doi.org/10.1115/1.4034234.
- Serrano, J.R., Olmeda, P., Arnau, F.J. and Reyes-Belmonte, M.A. (2015), "A study on the internal convection in small turbochargers. pro-posal of heat transfer convective coeycients", Appl. Therm. Energ., 89, 587-599. https://doi.org/10.1177/1468087419834194.
- Serrano, J.R., Olmeda, P., Arnau, F.J., Dombrovsky, A. and Smith, L. (2018), "Analysis and methodology to characterize heat transfer phenomena in automotive turbochargers", J. Eng. Gas Turb. Power, 137, 021901-1. https://doi.org/10.1115/1.4028261.
- Sirakov, B. and Casey, M. (2013), "Evaluation of heat transfer effects on turbocharger performance", J. Turbomach., 135, 233- 238. https://doi.org/10. 1115/1.4006608. https://doi.org/10.1115/1.4006608
- Storck, K., Karlsson, M., Andersson, I., Renner, J. and Loyd, D. (2012), "Formelsamling i termo-och fluiddynamik", LiU-tryck.
- Zheng, X., Yun, L. and Sun, Z. (2016), "Effects of volute's asymmetry on the performance of a turbocharger centrifugal compressor", Proceed. Inst. Mech. Eng., Part G, 232, 1235-1246, https://doi.org/10.1177/0954410016670418.