DOI QR코드

DOI QR Code

Analytical investigation of the cyclic behaviour of I-shaped steel beam with reinforced web using bonded CFRP

  • Mohabeddine, Anis I. (Construct, Faculty of Engineering University of Porto) ;
  • Eshaghi, Cyrus (Construct, Faculty of Engineering University of Porto) ;
  • Correia, Jose A.F.O. (Construct, Faculty of Engineering University of Porto) ;
  • Castro, Jose M. (Construct, Faculty of Engineering University of Porto)
  • 투고 : 2021.10.28
  • 심사 : 2021.05.21
  • 발행 : 2022.05.25

초록

Recent experimental studies showed that deep steel I-shaped profiles classified as high ductility class sections in seismic design international codes exhibit low deformation capacity when subjected to cyclic loading. This paper presents an innovative retrofit solution to increase the rotation capacity of beams using bonded carbon fiber reinforced polymers (CFRP) patches validated with advanced finite element analysis. This investigation focuses on the flexural cyclic behaviour of I-shaped hot rolled steel deep section used as beams in moment-resisting frames (MRF) retrofitted with CFRP patches on the web. The main goal of this CFRP reinforcement is to increase the rotation capacity of the member without increasing the overstrength in order to avoid compromising the strong column-weak beam condition in MRF. A finite element model that simulates the cyclic plasticity behavior of the steel and the damage in the adhesive layer is developed. The damage is modelled using the cohesive zone modelling (CZM) technique that is able to capture the crack initiation and propagation. Details on the modelling techniques including the mesh sensitivity near the fracture zone are presented. The effectiveness of the retrofit solution depends strongly on the selection of the appropriate adhesive. Different adhesive types are investigated where the CZM parameters are calibrated from high fidelity fracture mechanics tests that are thoroughly validated in the literature. This includes a rigid adhesive commonly found in the construction industry and two tough adhesives used in the automotive industry. The results revealed that the CFRP patch can increase the rotation capacity of a steel member considerably when using tough adhesives.

키워드

참고문헌

  1. Alfano, G. and Crisfield, M.A. (2001), "Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues", Int. J. Numer. Meth. Eng., 50(7), 1701-1736. https://doi.org/10.1002/nme.93.
  2. ANSI/AISC (2016), Seismic Provisions for Structural Steel Buildings. In AMERICAN I. Chicago.
  3. Araujo, H.A.M., Machado, J.J.M., Marques, E.A.S. and da Silva, L.F.M. (2017), "Dynamic behaviour of composite adhesive joints for the automotive industry", Compos. Struct., 171, 549-561. https://doi.org/10.1016/j.compstruct.2017.03.071.
  4. Araujo, M., Macedo, L., & Castro, J. M. (2017). Evaluation of the rotation capacity limits of steel members defined in EC8-3. Journal of Constructional Steel Research, 135, 11-29. https://doi.org/10.1016/j.jcsr.2017.04.004.
  5. Camanho, P.P., Davila, C.G. and de Moura, M.F. (2003), "Numerical simulation of mixed-mode progressive delamination in composite materials", J. Compos. Mater., 37(16), 1415-1438. https://doi.org/10.1177/0021998303034505.
  6. Carbas, R.J.C., Marques, E.A.S. and da Silva, L.F.M. (2021), "The influence of epoxy adhesive toughness on the strength of hybrid laminate adhesive joints", Appl. Adhesion Sci., 9(1), 1. https://doi.org/10.1186/s40563-020-00132-5.
  7. Carbas, R.J.C., Palmares, M.P. and da Silva, L.F.M. (2020), "Experimental and FE study of hybrid laminates aluminium carbon-fibre joints with different lay-up configurations", Manufact. Rev., 7, 2. https://doi.org/10.1051/mfreview/2019027.
  8. CEN (1992), Eurocode 3: Design of Steel Structures-Part 1.1: General Rules and Rules for Buildings, In CEN, European Committee for Standardization.
  9. Chaboche, J.L. (1986), "Time-independent constitutive theories for cyclic plasticity", Int. J. Plasticity, 2(2), 149-188. https://doi.org/10.1016/0749-6419(86)90010-0.
  10. Chen, Y., Sun, W. and Chan, T.-M. (2014), "Cyclic stress-strain behavior of structural steel with yieldstrength up to 460 N/mm2", Front. Struct. Civil Eng., 8(2), 178-186. https://doi.org/10.1007/s11709-014-0245-y.
  11. Cheng, X. and Chen, Y. (2018), "Ultimate strength of H-sections under combined compression and uniaxial bending considering plate interaction", J. Construct. Steel Res., 143, 196-207. https://doi.org/10.1016/j.jcsr.2017.12.019.
  12. D'Aniello, M., Landolfo, R., Piluso, V. and Rizzano, G. (2012), "Ultimate behavior of steel beams under non-uniform bending", J. Construct. Steel Res., 78, 144-158. https://doi.org/10.1016/j.jcsr.2012.07.003.
  13. Egilmez, O.O. and Doruk Yormaz. (2011), "Cyclic testing of steel I-Beams reinforced with GFRP", Steel Compos. Struct., 11(2), 93-114. https://doi.org/10.12989/scs.2011.11.2.093
  14. Ekiz, E., El-Tawil, S., Parra-Montesinos, G. and Goel, S. (2004), "Enhancing plastic hinge behavior in steel flexural members using CFRP wraps", In Proc., 13th World Conf. on Earthquake Engineering. Vancouver.
  15. El-Tawil, S., Ekiz, E., Goel, S. and Chao, S.H. (2011), "Retraining local and global buckling behavior of steel plastic hinges using CFRP", J. Construct. Steel Res., 67(3), 261-269. https://doi.org/10.1016/j.jcsr.2010.11.007.
  16. Elkady, A. and Lignos, D.G. (2018), "Improved Seismic Design and Nonlinear Modeling Recommendations for Wide-Flange Steel Columns", J. Struct. Eng., 144(9), 04018162. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002166.
  17. Falk, M.L., Needleman, A. and Rice, J.R. (2001), "A critical evaluation of cohesive zone models of dynamic fractur", Le Journal de Physique IV, 11(PR5), Pr5-43-Pr45-50. https://doi.org/10.1051/jp4:2001506.
  18. Haghani, R. (2010), "Analysis of adhesive joints used to bond FRP laminates to steel members - A numerical and experimental study", Constr. Build. Mater, 24(11), 2243-2251. https://doi.org/doi: 10.1016/j.conbuildmat.2010.04.032.
  19. Harries, K.A., Peck, A.J. and Abraham, E.J. (2009), "Enhancing stability of structural steel sections using FRP", Thin-Wall. Struct., 47(10), 1092-1101. https://doi.org/10.1016/j.tws.2008.10.007.
  20. Hildebrand, M. (1994), "The strength of adhesive-bonded joints between fibre-reinforced plastics and metals: Analysis, shape optimization and experiments", VTT Technical Research Centre of Finland. VTT Publication s(No. 192).
  21. Kaddaha, M.A., Younes, R. and Lafon, P. (2021), "Homogenization method to calculate the stiffness matrix of laminated composites. Eng, 2(4), 416-434. https://doi.org/10.3390/eng2040026.
  22. Kato, B. (1989), "Rotation capacity of H-section members as determined by local buckling", J. Construct. Steel Res., 13(2-3), 95-109. https://doi.org/10.1016/0143-974X(89)90008-4. K
  23. ato, B. and Nakao, M. (1994), "Strength and deformation capacity of H-Shpaed steel members governed by local buckling", J. Struct. Construct. Eng., 59(458), 127-136. https://doi.org/10.3130/aijs.59.127_2.
  24. Kenane, M.B.A.M. (1996), "Measurement of mixed mode delamination fracturetoughness of uniderectional Glass-Epoxy composites with mixed mode bending apparatus", Compos. Sci. Technol, 56(196AD), 859-865. https://doi.org/http://doi.org/10.1016/0266-3538(96)00005-X.
  25. Landolfo, R., D'Aniello, M., Costanzo, S., Tartaglia, R., Demonceau, J.F., Jaspart, J.P. and Bompa, D. (2018), EQUALJOINTS PLUS-Volume with Information Borchures for 4 Seimsically Qualified Joints. ECCS.
  26. Lignos, D.G. and Krawinkler, H. (2011), "Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
  27. Lignos, D.G., Hartloper, A.R., Elkady, A., Deierlein, G.G. and Hamburger, R. (2019), "Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering", J. Struct. Eng., 145(9), 04019083. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002353.
  28. Lignos, D.G., Hartloper, A.R., Elkady, A., Deierlein, G.G. and Hamburger, R. (2019), "Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering", J. Struct. Eng., 145(9), 04019083. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002896.
  29. Lignos, D.G., Hartloper, A.R., Elkady, A., Deierlein, G.G. and Hamburger, R. (2019), "Proposed updates to the ASCE 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering", J. Struct. Eng., 145(9), 04019083. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002353.
  30. Machado, J., Hayashi, A., Nunes, P., Marques, E., Carbas, R., Sato, C. and da Silva, L. (2019), "Strain rate dependence of a crash resistant adhesive as a function of temperature for the automotive industry", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(11), 2189-2203. https://doi.org/10.1177/1464420719836914.
  31. Machado, J.J.M., Gamarra, P.M.R., Marques, E.A.S. and da Silva, L.F.M. (2018), "Improvement in impact strength of composite joints for the automotive industry", Compos. Part B: Eng., 138, 243-255. https://doi.org/10.1016/j.compositesb.2017.11.038.
  32. Mohabeddine, A., Correia, J., Aires Montenegro, P., De Jesus, A., Miguel Castro, J. and Berto, F. (2021), "Probabilistic S-N curves for CFRP retrofitted steel details", Int. J. Fatigue, 148, 106205. https://doi.org/10.1016/j.ijfatigue.2021.106205.
  33. Mohabeddine, A., Correia, J.A.F.O., Castro, J.M., Montenegro, P., De Jesus, A.M.P. and Calcada, R.A.B. (2021), "Numerical investigation on the fatigue life of non-cracked metallic plates repaired with bonded CFRP", Ce/papers, 4(2-4), 1135-1144. https://doi.org/10.1002/cepa.1405.
  34. Mohabeddine, A., Correia, J.A.F.O., Montenegro, P.A. and Castro, J.M. (2021), "Fatigue crack growth modelling for cracked small-scale structural details repaired with CFRP", Thin-Wall. Struct., 161, 107525. https://doi.org/10.1016/j.tws.2021.107525.
  35. Mohabeddine, A., Koudri, Y.W., Correia, J.A.F.O. and Castro, J. M. (2021), "Rotation capacity of steel members for the seismic assessment of steel buildings", Eng. Struct., 244, 112760. https://doi.org/10.1016/j.engstruct.2021.112760.
  36. Mohabeddine, A.I., Kouidri, Y.W., Castro, J.M. and Correia, J.A.F.O. (2018), Numerical Simulation and Calibration of the Cyclic Behavior of Structural Steel Under Different Loading Protocols. XIX International Colloquium on Mechanical Fatigue of Metals, Porto, Portugal, September.
  37. Reinforcements, S.P. (2021), "Technical datasheet C laminates. In O. A. https://www.spreinforcement.eu/sites/default/files/field_product_col_doc_file/r_c-laminates_pub_tds_prod_c-laminates_v4.102020_eu_en.pdf.(Ed.).
  38. Santos, D.G.D., Carbas, R.J.C., Marques, E.A.S. and da Silva, L.F. M. (2019), "Reinforcement of CFRP joints with fibre metal laminates and additional adhesive layers", Compos. Part B: Eng., 165, 386-396. https://doi.org/10.1016/j.compositesb.2019.01.096.
  39. Schellekens, J.C.J. and de Borst, R. (1993), "A non-linear finite element approach for the analysis of mode-I free edge delamination in composites", Int. J. Solids Struct., 30(9), 1239-1253. https://doi.org/10.1016/0020-7683(93)90014-X.
  40. Standards, B. (1993), BS EN 10034:1993 Structural Steel I and H sections Tolerances on Shape and Dimensions.
  41. Turon, A., Davila, C.G., Camanho, P.P. and Costa, J. (2007), "An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models", Eng. Fracture Mech., 74(10), 1665-1682. https://doi.org/10.1016/j.engfracmech.2006.08.025.
  42. Venture, S.J. (1997), "Protocol for fabrication, inspection, testing, and documentation of beam-column connection tests and other experimental specimens", Rep. No. SAC/BD-97, 2.
  43. Wake, R.D.A.A.W.C. (1986), Structural Adhesive Joint in Engeneering.
  44. Yang, Q. and Cox, B. (2005), "Cohesive models for damage evolution in laminated composites", Int. J. Fracture, 133(2), 107-137. https://doi.org/10.1007/s10704-005-4729-6.
  45. Yang, Y., Zhao, J., Zhang, S., Marques, E., Carbas, R., Machado, J. and da Silva, L. (2021), "Determination of fracture toughness of an adhesive in civil engineering and interfacial damage analysis of carbon fiber reinforced polymer-steel structure bonded joints", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(11), 2423-2440. https://doi.org/10.1177/14644207211021385.
  46. Zou, Z., Reid, S.R., Li, S. and Soden, P.D. (2002), "Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation", J. Compos. Mater., 36(4), 477-499. https://doi.org/10.1177/0021998302036004539.