References
- Afshari, H., Hare, W. and Tesfamariam, S. (2019), "Constrained multi-objective optimization algorithms: Review and comparison with application in reinforced concrete structures", Appl. Soft Comput., 83(5), 105631. https://doi.org/10.1016/j.asoc.2019.105631.
- AISC (2017), Steel Construction Manual, American Institute of Steel Construction, Chicago, Illinois, U.S.A.
- ANSI/AISC (2016), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, Illinois, U.S.A.
- ANSI/AISC 358-16 (2016), Prequalified connections for special and intermediate steel moment frames for seismic applications, American Institute of Steel Construction; Chicago, Illinois, U.S.A.
- ANSI/AISC 360-16 (2016), Specification for structural steel buildings, American Institute of Steel Construction; Chicago, Illinois, U.S.A.
- Asadi, P. and Hajirasouliha, I. (2020), "A practical methodology for optimum seismic design of RC frames for minimum damage and life-cycle cost", Eng. Struct., 202, 109896. https://doi.org/10.1016/j.engstruct.2019.109896.
- ASCE/SEI (2017), Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia, U.S.A.
- ASCE/SEI (2017), Seismic Evaluation and Retrofit of Existing Buildings, American Society of Civil Engineers, Reston, Virginia, U.S.A.
- Bai, J., Chen, H., Jia, J., Sun, B. and Jin, S. (2020), "New lateral load distribution pattern for seismic design of deteriorating shear buildings considering soil-structure interaction", Soil Dyn. Earthq. Eng., 139(10), 106344. https://doi.org/10.1016/j.soildyn.2020.106344.
- Basim, M.C. and Estekanchi, H.E. (2015), "Application of endurance time method in performance-based optimum design of structures", Struct. Safety, 56, 52-67. https://doi.org/10.1016/j.strusafe.2015.05.005.
- Dhiman, G. and Kumar, V. (2018a), "Emperor penguin optimizer: A bio-inspired algorithm for engineering problems", Knowl- Based Syst., 159(2), 20-50. https://doi.org/10.1016/j.knosys.2018.06.001.
- Dhiman, G. and Kumar, V. (2018b), "Multi-objective spotted hyena optimizer: A Multi-objective optimization algorithm for engineering problems", Knowl-Based Syst., 150, 175-197. https://doi.org/10.1016/j.knosys.2018.03.011.
- Dhiman, G., Singh, K.K., Soni, M., Nagar, A., Dehghani, M., Slowik, A., Kaur, A., Sharma, A., Houssein, E.H. and Cengiz, K. (2020), "MOSOA: A new multi-objective seagull optimization algorithm", Expert Syst. Appl., 167, 114150. https://doi.org/10.1016/j.eswa.2020.114150.
- Faramarzi, A., Heidarinejad, M., Mirjalili, S. and Gandomi, A.H. (2020a), "Marine Predators Algorithm: A nature-inspired metaheuristic", Expert Syst. Appl., 152(4), 113377. https://doi.org/10.1016/j.eswa.2020.113377.
- Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020b), "Equilibrium optimizer: A novel optimization algorithm", Knowl-Based Syst., 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190.
- Farshchin, M., Maniat, M., Camp, C.V. and Pezeshk, S. (2018), "School based optimization algorithm for design of steel frames", Eng. Struct., 171(3), 326-335. https://doi.org/10.1016/j.engstruct.2018.05.085.
- FEMA P-58-1 (2018), Seismic Performance Assessment of Buildings: Volume 1 - Methodology, Federal Emergency Management Agency; Washington, D.C., U.S.A.
- FEMA P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency; Washington, D.C., U.S.A.
- Ghasemof, A., Mirtaheri, M. and Mohammadi, R.K. (2021a), "A new swift algorithm for bi-objective optimum design of steel moment frames", J. Build. Eng., 39(5), 102162. https://doi.org/10.1016/j.jobe.2021.102162.
- Ghasemof, A., Mirtaheri, M., Mohammadi, R.K. and Mashayekhi, M.R. (2021b), "Multi-objective optimal design of steel MRF buildings based on life-cycle cost using a swift algorithm", Structures, 34(3), 4041-4059. https://doi.org/10.1016/j.istruc.2021.09.088.
- Ghasemof, A., Mirtaheri, M. and Mohammadi, R.K. (2022a), "Effects of demand parameters in the performance-based multiobjective optimum design of steel moment frame buildings", Soil Dyn. Earthq. Eng., 153(1), 107075. https://doi.org/10.1016/j.soildyn.2021.107075.
- Ghasemof, A., Mirtaheri, M. and Mohammadi, R.K. (2022b), "Multi-objective optimization for probabilistic performancebased design of buildings using FEMA P-58 methodology", Eng. Struct., 254(1), 113856. https://doi.org/10.1016/j.engstruct.2022.113856.
- Gholizadeh, S. (2015), "Performance-based optimum seismic design of steel structures by a modified firefly algorithm and a new neural network", Adv. Eng. Softw., 81, 50-65. https://doi.org/10.1016/j.advengsoft.2014.11.003.
- Gholizadeh, S. and Baghchevan, A. (2017), "Multi-objective seismic design optimization of steel frames by a chaotic metaheuristic algorithm", Eng. Comput., 33(4), 1045-1060. https://doi.org/10.1007/s00366-017-0515-0.
- Gholizadeh, S. and Fattahi, F. (2021), "Multi-objective design optimization of steel moment frames considering seismic collapse safety", Eng. Comput., 37(2), 1315-1328. https://doi.org/10.1007/s00366-019-00886-y.
- Hasancebi, O. and Carbas, S. (2011), "Ant colony search method in practical structural optimization", Int. J. Optim. Civil Eng., 1, 91-105.
- Hashim, F.A., Hussain, K., Houssein, E.H., Mabrouk, M.S. and Al-Atabany, W. (2021), "Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems", Appl. Intell., 51(3), 1531-1551. https://doi.org/10.1007/s10489-020-01893-z.
- Ibarra, L.F. and Krawinkler, H. (2005), "Global collapse of frame structures under seismic excitations", Report No.152; Department of Civil and Environmental Engineering, Stanford University, John A. Blume Earthquake Engineering Center, Stanford, CA, U.S.A.
- Karami Mohammadi, R. (2001), "Effects of shear strength distribution on the reduction of seismic damage of structures", Ph.D. Dissertation, Sharif University of Technology, Tehran, Iran.
- Kashani, A.R., Camp, C.V., Rostamian, M., Azizi, K. and Gandomi, A.H. (2021), "Population-based optimization in structural engineering: A review", Artif. Intell. Rev., 55, 345-452. https://doi.org/10.1007/s10462-021-10036-w.
- Kaur, H., Rai, A., Bhatia, S.S. and Dhiman, G. (2020), "MOEPO: A novel Multi-objective Emperor Penguin Optimizer for global optimization: Special application in ranking of cloud service providers", Eng. Appl. Artif. Intell., 96, 104008. https://doi.org/10.1016/j.engappai.2020.104008.
- Kaveh, A., Fahimi-Farzam, M. and Kalateh-Ahani, M. (2015), "Optimum design of steel frame structures considering construction cost and seismic damage", Smart Struct. Syst., 16(1), 1-26. https://doi.org/10.12989/sss.2015.16.1.001.
- Kaveh, A. and Dadras, A. (2017), "A novel meta-heuristic optimization algorithm: Thermal exchange optimization", Adv. Eng. Softw., 110, 69-84. https://doi.org/10.1016/j.advengsoft.2017.03.014.
- Kaveh, A. and Mahdavi, V.R. (2019), "Multi-objective colliding bodies optimization algorithm for design of trusses", J. Comput. Design Eng., 6(1), 49-59. https://doi.org/10.1016/j.jcde.2018.04.001.
- Kaveh, A. and Ilchi Ghazaan, M. (2020), "A new VPS-based algorithm for multi-objective optimization problems", Eng. Comput., 36(3), 1029-1040. https://doi.org/10.1007/s00366-019-00747-8.
- Kaveh, A., Biabani Hamedani, K., Milad Hosseini, S. and Bakhshpoori, T. (2020), "Optimal design of planar steel frame structures utilizing meta-heuristic optimization algorithms", Structures, 25(3), 335-346. https://doi.org/10.1016/j.istruc.2020.03.032.
- Kaveh, A. and Rezazadeh Ardebili, S. (2021), "An improved plasma generation optimization algorithm for optimal design of reinforced concrete frames under time-history loading", Structures, 34(4), 758-770. https://doi.org/10.1016/j.istruc.2021.08.040.
- Lignos, D.G. and Krawinkler, H. (2011), "Deterioration Modeling of Steel Components in Support of Collapse Prediction of Steel Moment Frames under Earthquake Loading", J. Struct. Eng., 137(11), 1291-1302. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000376.
- Lignos, D.G., Krawinkler, H. and Whittaker, A.S. (2011), "Prediction and validation of sidesway collapse of two scale models of a 4-story steel moment frame", Earthq. Eng. Struct. Dyn., 40(7), 807-825. https://doi.org/10.1002/eqe.1061.
- Lignos, D., Hartloper, A.R., Elkady, A.M.A., Deierlein, G.G. and Hamburger, R. (2019), "Proposed updates to the asce 41 nonlinear modeling parameters for wide-flange steel columns in support of performance-based seismic engineering", J. Struct. Eng., 145(9), 4019083. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002353.
- Mahjoubi, S. and Bao, Y. (2021), "Game theory-based metaheuristics for structural design optimization", Comput. Aided Civil Infrastruct. Eng., 36(10), 1337-1353. https://doi.org/10.1111/mice.12661.
- Mei, L. and Wang, Q. (2021), "Structural Optimization in Civil Engineering: A Literature Review", Buildings, 11(2), 66. https://doi.org/10.3390/buildings11020066.
- Mirjalili, S., Mirjalili, S.M. and Lewis, A. (2014), "Grey Wolf Optimizer", Adv. Eng. Softw., 69, 46-61. https://doi.org/10.1016/j.advengsoft.2013.12.007.
- Mirjalili, S. (2015), "The Ant Lion Optimizer", Adv. Eng. Softw., 83, 80-98. https://doi.org/10.1016/j.advengsoft.2015.01.010.
- Mirjalili, S. (2016), "Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems", Neural Computing and Applications, 27(4), 1053-1073. https://doi.org/10.1007/s00521-015-1920-1.
- Mirjalili, S., Jangir, P. and Saremi, S. (2017), "Multi-objective ant lion optimizer: A multi-objective optimization algorithm for solving engineering problems", Appl. Intell., 46(1), 79-95. https://doi.org/10.1007/s10489-016-0825-8.
- Moghaddam, H. and Hajirasouliha, I. (2004), "A new approach for optimum design of structures under dynamic excitation", Asian J. Civil Eng., 5(1-2), 69-84.
- Mohammadi, R.K., El Naggar, M.H. and Moghaddam, H. (2004), "Optimum strength distribution for seismic resistant shear buildings", Int. J. Solids Struct., 41(22-23), 6597-6612. https://doi.org/10.1016/j.ijsolstr.2004.05.012.
- Moghaddam, H. (2009), "On the optimum performance-based design of structures", Proceedings of the U.S.-Iran Seismic Workshop, Irvine, California, June-July.
- Mohammadi, R.K. and Ghasemof, A. (2015), "Performance-based design optimization using uniform deformation theory: A comparison study", Latin American J. Solids Struct., 12(1), 18-36. https://doi.org/10.1590/1679-78251207.
- Mohammadi, R.K., Mirjalaly, M., Mirtaheri, M. and Nazeryan, M. (2018), "Comparison between uniform deformation method and Genetic Algorithm for optimizing mechanical properties of dampers", Earthq. Struct., 14(1) https://doi.org/10.12989/eas.2018.14.1.001.
- Mokarram, V. and Banan, M.R. (2018), "A new PSO-based algorithm for multi-objective optimization with continuous and discrete design variables", Struct. Multidiscip. O., 57(2), 509-533. https://doi.org/10.1007/s00158-017-1764-7.
- Mohammadi, R.K., Garoosi, M.R. and Hajirasouliha, I. (2019), "Practical method for optimal rehabilitation of steel frame buildings using buckling restrained brace dampers", Soil Dyn. Earthq. Eng., 123, 242-251. https://doi.org/10.1016/j.soildyn.2019.04.025.
- Mohammadi, R.K., Ghamari, H. and Farsangi, E.N. (2021), "Active control of building structures under seismic load using a new uniform deformation-based control algorithm", Structures, 33(3), 593-605. https://doi.org/10.1016/j.istruc.2021.04.054.
- Nabid, N., Hajirasouliha, I. and Petkovski, M. (2020), "Multicriteria performance-based optimization of friction energy dissipation devices in RC frames", Earthq. Struct., 18(2), 185-199. https://doi.org/10.12989/eas.2020.18.2.185.
- NIST (2010), "Evaluation of the FEMA P-695 Methodology for Quantification of Building Seismic Performance Factors", NIST GCR 10-917-8; National Institute of Standards and Technology (NIST), Gaithersburg, MD, U.S.A.
- OpenSees (2016), Open system for earthquake engineering simulation (OpenSees); Pacific Earthquake Engineering Research Centre, University of California, Berkeley, CA, U.S.A. https://opensees.berkeley.edu
- Patel, C.C. and Jangid, R.S. (2011), "Dynamic response of adjacent structures connected by friction damper", Earthq. Struct., 2(2), 149-169. https://doi.org/10.12989/eas.2011.2.2.149.
- Patel, C.C. and Jangid, R.S. (2014), "Dynamic response of identical adjacent structures connected by viscous damper", Struct. Control Health Monitor., 21(2), 205-224. https://doi.org/10.1002/stc.1566.
- Rao, R. (2016), "Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems", Int. J. Industr. Eng. Comput., 7(1), 19-34. https://doi.org/10.5267/j.ijiec.2015.8.004.
- Rezazadeh, F. and Talatahari, S. (2020), "Seismic energy-based design of BRB frames using multi-objective vibrating particles system optimization", Structures, 24, 227-239. https://doi.org/10.1016/j.istruc.2020.01.006.
- Saadat, S., Camp, C.V. and Pezeshk, S. (2016), "Probabilistic seismic loss analysis for the design of steel structures: optimizing for multiple-objective functions", Earthq. Spectra, 32(3), 1587-1605. https://doi.org/10.1193/080513EQS223M.
- Shabani, A., Asgarian, B., Gharebaghi, S.A., Salido, M.A. and Giret, A. (2019), "A new optimization algorithm based on search and rescue operations", Math. Probl. Eng., 2019(2), 1-23. https://doi.org/10.1155/2019/2482543.
- Talatahari, S., Jalili, S. and Azizi, M. (2021), "Optimum design of steel building structures using migration-based vibrating particles system", Structures, 33(5), 1394-1413. https://doi.org/10.1016/j.istruc.2021.05.028.
- USGS (2021), Unified Hazard Tool; U.S. Geological Survey, Reston, VA, U.S.A. https://earthquake.usgs.gov/hazards/interactive/
- Wang, Q., Qiao, H., Domenico, D. de, Zhu, Z. and Tang, Y. (2020a), "Seismic response control of adjacent high-rise buildings linked by the Tuned Liquid Column Damper-Inerter (TLCDI)", Eng. Struct., 223(5), 111169. https://doi.org/10.1016/j.engstruct.2020.111169.
- Wang, X., Zhang, Q., Qin, X. and Sun, Y. (2020b), "An efficient discrete optimization algorithm for performance-based design optimization of steel frames", Adv. Struct. Eng., 23(3), 411-423. https://doi.org/10.1177/1369433219872440.
- Yapici, H. and Cetinkaya, N. (2019), "A new meta-heuristic optimizer: Pathfinder algorithm", Appl. Soft Comput., 78, 545- 568. https://doi.org/10.1016/j.asoc.2019.03.012.
- Zou, X.K. and Chan, C.M. (2005), "An optimal resizing technique for seismic drift design of concrete buildings subjected to response spectrum and time history loadings", Comput. Struct., 83(19-20), 1689-1704. https://doi.org/10.1016/j.compstruc.2004.10.002.