DOI QR코드

DOI QR Code

열-수리-역학 거동 해석을 위한 경계면 요소의 수식화

Numerical Formulation of Thermo-Hydro-Mechanical Interface Element

  • 신호성 (울산대학교 건설환경공학부) ;
  • 윤석 (한국원자력연구원 저장처분기술관리부)
  • Shin, Hosung (Dept. of Civil & Environmental Engrg., Univ. of Ulsan) ;
  • Yoon, Seok (Disposal Safety Evaluation Research Division, KAERI)
  • 투고 : 2022.08.05
  • 심사 : 2022.08.15
  • 발행 : 2022.09.30

초록

암반내 불연속면이나 지반-구조물의 접촉면은 열-수리-역학적으로 연계된 거동 특성을 보이므로, 온전한 지배방정식에 근거한 경계면 요소의 개발이 필요하다. 본 논문은 경계면 요소에 대한 힘평형 방정식, 유체의 연속방정식 그리고 에너지 평형 방정식을 유도하였다. 그리고 경계면 요소에 대한 탄소성 역학 모델의 강성행렬을 제시하였다. 개발된 유한요소는 2차원 조건에서 변위는 6절점, 수압과 온도는 4절점을 사용한다. 단층내 유체 주입에 대한 완전연계된 THM 해석은 단층내의 유효응력 감소와 주위 암반의 온도 수축에 의한 주입압의 복합적인 변화을 모델링 할수 있었다. 하지만, 열적 현상을 무시한 HM해석은 수리-역학적 변수를 과다하게 산정하였다.

Because discontinuity in the rock mass and contact of soil-structure interaction exhibits coupled thermal-hydromechanical (THM) behavior, it is necessary to develop an interface element based on the full governing equations. In this study, we derive force equilibrium, fluid continuity, and energy equilibrium equations for the interface element. Additionally, we present a stiffness matrix of the elastoplastic mechanical model for the interface element. The developed interface element uses six nodes for displacement and four nodes for water pressure and temperature in a two-dimensional analysis. The fully coupled THM analysis for fluid injection into a fault can model the complicated evolution of injection pressure due to decreasing effective stress in the fault and thermal contraction of the surrounding rock mass. However, the result of hydromechanical analysis ignoring thermal phenomena overestimates hydromechanical variables.

키워드

과제정보

본 연구는 한국수력원자력(주) 해오름동맹출연사업(원전지역 특화연구)과 한국연구재단 중견연구자지원사업 (NRF-2022R1A2C200823611)의 지원으로 수행되었으며, 이에 깊은 감사를 드립니다.

참고문헌

  1. Barton, N., Bandis, S., and Bakhtar, K. (1985), "Strength, Deformation and Conductivity Coupling of Rock Joints", International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.22, No.3, pp.121-140. https://doi.org/10.1016/0148-9062(85)93227-9
  2. Beer, G. (1985), "An Isoparametric Joint/interface Element for Finite Element Analysis", International Journal for Numerical Methods in Engineering, Vol.21, pp.585-600. https://doi.org/10.1002/nme.1620210402
  3. Cui, W., Potts, D.M., Zdravkovic, L., Gawecka, K.A., and Tsiampousi, A. (2019), "Formulation and Application of 3D THM-coupled Zero-thickness Interface Elements", Computers and Geotechnics, Vol.116, 103204.
  4. Economides, M.J. and Nolte, K.G. (2000), Reservoir Stimulation, Third ed., John Wiley & Sons.
  5. Gens, A., Carol, I., and Alonso, E.E. (1990), "A Constitutive Model for Rock Joints: Formulation and Numerical Implementation", Computers and Geotechnics, Vol.9, pp.3-20. https://doi.org/10.1016/0266-352X(90)90026-R
  6. Ghaboussi, J., Wilson E.L., and Isenberg J. (1973), "Finite Element for Rock Joints and Interfaces", Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.99, pp.833-848. https://doi.org/10.1061/JSFEAQ.0001936
  7. Goodman, R., Taylor, R., and Brekke, T. (1968), "A Model for the Mechanics of Jointed Rock", Journal of the Soil Mechanics and Foundations Division, Vol.94, pp.637-659. https://doi.org/10.1061/JSFEAQ.0001133
  8. Guiducci, C., Pellegrino, A., Radu, J.P., Collin, F., and Charlier, R. (2002), "Numerical Modeling of Hydro-mechanical Fracture behavior", Numerical Models in Geomechanics: Proceedings of the 8th International Symposium NUMOG VIII, pp.293-299.
  9. Hilber, H.M. and Taylor, R.L. (1976), A finite element model of fluid flow in systems of deformable fractured rock, Structural Engineering and Structural Mechanics Report No. 76-5, University of California.
  10. Karabatakis, D.A. and Hatzigogos, T.N. (2002), "Analysis of Creep behaviour Using Interface Elements", Computers and Geotechnics, Vol.29, pp.257-277. https://doi.org/10.1016/S0266-352X(01)00033-7
  11. Ng, K.L.A. and Small, J.C. (1997), "Behavior of Joints and Interfaces Subjected to Water Pressure", Computers and Geotechnics, Vol.20, No.1, pp.71-93. https://doi.org/10.1016/S0266-352X(96)00015-8
  12. Olivella, S., Gens, A., Carrera, J., and Alonso, E.E. (1996), "Numerical Formulation for a Simulator (CODE_BRIGHT) for the Coupled Analysis of Saline Media", Engineering Computations, Vol.13, pp. 87-112. https://doi.org/10.1108/02644409610151575
  13. Park, J.W., Guglielmi, Y., Graupner, B., Rutqvist, J., Kim, T., Park, E.S., and Lee, C. (2020), "Modeling of Fluid Injection-induced Fault Reactivation Using Coupled Fluid Flow and Mechanical Interface Model", International Journal of Rock Mechanics and Mining Sciences, Vol.132, 104373.
  14. Rinaldi, A.P., Rutqvist, J., and Cappa, F. (2014), "Geomechanical Effects on CO2 Leakage through Fault Zones during Large-scale Underground Injection", International Journal of Greenhouse Gas Control, Vol.20, pp.117-131. https://doi.org/10.1016/j.ijggc.2013.11.001
  15. Rutqvist, J., Wu, Y.S., Tsang, C.F., and Bodvarsson, G. (2002), "A Modeling Approach for Analysis of Coupled Multiphase Fluid Flow, Heat Transfer, and Deformation in Fractured Porous Rock", International Journal of Rock Mechanics and Mining Sciences, Vol.39, pp.429-442, https://doi.org/10.1016/S1365-1609(02)00022-9
  16. Rutqvist, J., Rinaldi, A.P., Cappa, F., and Moridis, G. (2013), "Modeling of Fault Reactivation and Induced Seismicity during Hydraulic Fracturing of Shale-gas Reservoirs", Journal of Petroleum Science and Engineering, Vol.107, pp.31-44. https://doi.org/10.1016/j.petrol.2013.04.023
  17. Schrefler, B.A. and Scotta, R. (2001), "A Fully Coupled Dynamic Model for Two-phase Fluid Flow in Deformable Porous Media", Computer Methods in Applied Mechanics and Engineering, Vol.190, pp.3223-3246. https://doi.org/10.1016/S0045-7825(00)00390-X
  18. Schultz, R., Skoumal, R.J., Brudzinski, M.R., Eaton, D., Baptie, B., and Ellsworth, W. (2020), "Hydraulic Fracturing-induced Seismicity", Reviews of Geophysics, Vol.58, e2019RG000695.
  19. Segura, J.M. and Carol, I. (2004), "On Zero-thickness Interface Elements for Diffusion Problems", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.28, No.9, pp.947-962. https://doi.org/10.1002/nag.358
  20. Segura, J.M. and Carol, I. (2008), "Coupled HM Analysis Using Zero-thickness Interface Elements with Double Nodes. Part II: Verification and Application", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.32, pp.2103-2123. https://doi.org/10.1002/nag.730
  21. Shin, H. (2011), "Formulation of Fully Coupled THM behavior in Unsaturated Soil", Journal of the Korean Geotechnical Society, Vol.27, No.3, pp.75-83. https://doi.org/10.7843/KGS.2011.27.3.075
  22. Shin, H. (2017), "Numerical Discussion on Natural Convection in Soils", Journal of the Korean Geotechnical Society, Vol.33, No.2, pp.35-47. https://doi.org/10.7843/KGS.2017.33.2.35
  23. Shin, H. and Santamarina, J. (2019), "An Implicit Joint-continuum Model for the Hydro-mechanical Analysis of Fractured Rock Masses", International Journal of Rock Mechanics and Mining Sciences, Vol.119, pp.140-148. https://doi.org/10.1016/j.ijrmms.2019.04.006
  24. Zoback, M. and Gorelick, S. (2012), "Earthquake Triggering and Large-scale Geologic Storage of Carbon Dioxide", Proceedings of the National Academy of Sciences, Vol.109, No.26, pp.10164-10168. https://doi.org/10.1073/pnas.1202473109