DOI QR코드

DOI QR Code

Anti-obesity effect of the combination of fermented extracts from Momordica charanatia and Withania somnifera in mice fed a high-fat diet

고지방식이를 제공한 마우스에서 여주와 아쉬아간다 발효추출물 조합의 항비만 효과

  • Received : 2022.06.03
  • Accepted : 2022.07.14
  • Published : 2022.09.30

Abstract

We investigated the serum cholesterol and visceral fat lowering effects of Momordica charanatia (MC) and Withania somnifera (WS) extracts in high-fat diet (HFD)-fed mice. Combination of fermented MC and WS extracts (FMCWS) as well as that of non-fermented extracts (MCWS) were orally administered to HFD-induced obese mice along with the HFD supplementation for 8 weeks. During the experiment, body weight, food intake, and levels of total cholesterol, triglyceride and HDL-cholesterol were analyzed. Body weight and the levels of total cholesterol and triglycerides were significantly increased in the HFD-fed mice compared with the normal control (NC) group. However, supplementation of the extracts showed a tendency to reduce body weight gain and suppressed the levels of total cholesterol and triglyceride with the increment of HDL-cholesterol levels. Abdominal fat weight was significantly increased in the HFD group, and the size of adipocytes within the epididymal adipose tissue was markedly expanded compared with the NC group. However, in the FMCWS and MCWS groups, the abdominal fat weight was significantly reduced and the sizes of the adipocytes were noticeably diminished compared with those of the HFD-fed mice. Moreover, the deposition of giant vesicular fat cells observed in the liver tissue of the HFD group was prominently reduced in these groups. These results indicate that the combination of extracts from MC and WS tends to have potent synergic effects in reducing body weight gain as well as significantly lowering the visceral fat and the serum lipid levels, and thus improving anti-obesity efficacy in HFD-induced obese mice.

본 연구는 고지방식이(HFD)를 제공한 비만동물모델에서 Momordica charanatia (MC)와 Withania somnifera (WS) 추출물의 혈청 콜레스테롤 및 내장지방 감소효과를 분석하였다. 유산균으로 발효한 MC와 WS 추출물의 조합(FMCWS) 및 비발효 추출물(MCWS)의 조합을 HFD로 유도된 비만마우스에 8주 동안 경구 투여하였다. 실험 기간 동안 체중, 식이섭취량, 총 콜레스테롤, 중성지방, HDL-콜레스테롤 수치를 분석하였다. 체중과 총 콜레스테롤 및 중성지방 수치는 정상대조(NC)군과 비교하여 HFD를 섭취한 HFD군에서 유의하게 증가했다. 그러나, 추출물의 투여로 인해 비만마우스의 체중증가가 감소되는 경향을 확인하였고 더불어 HDL-콜레스테롤의 증가와 함께 총 콜레스테롤 및 중성지방 수치를 유의적으로 감소시켰다. 복부지방 무게와 부고환 지방조직 내 지방세포의 크기는 NC군에 비해 HFD군에서 유의하게 증가하였다. 그러나, FMCWS와 MCWS를 각각 투여한 군은 HFD군에 비해 복부지방 무게와 부고환 지방세포의 크기가 유의하게 감소하였다. 또한, HFD군의 간 조직에서 관찰되는 거대 소포성 지방구의 침착이 이들 군에서는 현저하게 감소하였다. 이러한 결과는 MC와 WS 추출물의 조합이 체중 증가에 대한 감소 경향이 있을 뿐만 아니라 내장지방 및 혈청 지질 수준을 현저히 낮추는 데 강력한 시너지 효과가 있어 HFD 유발 비만마우스에서 항비만 활성을 향상시키는 효능이 있음을 시사한다.

Keywords

Acknowledgement

본 논문은 충북바이오헬스산업혁신센터 제약바이오사업단의 2021(2차)년도 핵심기술개발 및 기업지원사업 연구개발사업(과제번호: 2021RIS0415)과 프로젝트랩2 사업(과제번호: 2021RIS0645) 지원에 의한 결과로 이에 감사드립니다.

References

  1. Nam GE, Kim YH, Han K, Jung JH, Rhee EJ, Lee SS, Kim DJ, Lee KW, Lee WY (2020) Korean society for the study of obesity. Obesity fact sheet in Korea, 2019: Prevalence of obesity and abdominal obesity from 2009 to 2018 and social factors. J Obes Metab Syndr 29: 124-132. doi: 10.7570/jomes20058
  2. Dai H, Alsalhe TA, Chalghaf N, Ricco M, Bragazzi NL, Wu J (2020) The global burden of disease attributable to high body mass index in 195 countries and territories, 1990-2017: An analysis of the Global Burden of Disease Study. PLoS Med 17: e1003198. doi: 10.1371/journal.pmed.1003198
  3. Ooi LG, Liong MT (2011) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11: 2499-2522. doi: 10.3390/ijms11062499
  4. Kang JG, Park CY (2012) Anti-obesity drugs: A review about their effects and safety. Diabetes Metab J 36: 13-25. doi: 10.4093/dmj.2012.36.1.13
  5. Kim KK (2011) Pharmacotherapy for obesity. J Korean Med Assoc 54: 409-418. doi: 10.5124/jkma.2011.54.4.409
  6. Park HS, Kim WK, Kim HP, Yoon YG (2015) The efficacy of lowering blood glucose levels using the extracts of fermented bitter melon in the diabetic mice. J Appl Biol Chem 58: 259-265. doi: 10.3839/jabc.2015.041
  7. Mahwish, Saeed F, Sultan MT, Riaz A, Ahmed S, Bigiu N, Amarowicz R, Manea R (2021) Bitter melon (Momordica charantia L.) fruit bioactives charantin and vicine potential for diabetes prophylaxis and treatment. Plants (Basel) 10: 730. doi: 10.3390/plants10040730
  8. Lee KS, Kim HP, Park HJ, Yoon YG (2021) Improvement of testosterone deficiency by fermented Momordica charantia extracts in aging male rats. Food Sci Biotechnol 30: 443-454. doi: 10.1007/s10068-020-00872-x
  9. Huang HL, Hong YW, Wong YH, Chen YN, Chyuan JH, Huang CJ, Chao PM (2008) Bitter melon (Momordica charantia L.) inhibits adipocyte hypertrophy and down regulates lipogenic gene expression in adipose tissue of diet-induced obese rats. Br J Nutr 99: 230-239. doi:10.1017/S0007114507793947
  10. Wang J, Ryu HK (2015) The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet. Nutr Res Pract 9: 489-495. doi: 10.4162/nrp.2015.9.5.489
  11. Woo SM, Min KJ, Kwon TK (2013) Anti-cancer effects and molecular mechanisms of Withaferin A. J Life Sci 23: 462-469. doi: 10.5352/JLS.2013.23.3.462
  12. Bhutani KK, Gohil VM (2010) Natural products drug discovery research in India: status and appraisal. Indian J Exp Biol 48: 199-207. PMID:21046972
  13. Lee J, Liu J, Feng X, Salazar Hernandez MA, Mucka P, Ibi D, Choi JW, Ozcan U (2016) Withaferin A is a leptin sensitizer with strong antidiabetic properties in mice. Nat Med 22: 1023-1032. doi: 10.1038/nm.4145
  14. Pfluger PT, Tschop MH (2016) Obesity: will withaferin win the war? Nat Med 22: 970-971. doi: 10.1038/nm.4182
  15. Bayliak MM, Dmytriv TR, Melnychuk AV, Strilets NV, Storey KB, Lushchak VI (2021) Chamomile as a potential remedy for obesity and metabolic syndrome. EXCLI J 20: 1261-1286. doi: 10.17179/excli2021-4013
  16. Kunutsor SK, Apekey TA, Seddoh D, Walley J (2014) Liver enzymes and risk of all-cause mortality in general populations: a systematic review and meta-analysis. Int J Epidemiol 43: 187-201. doi: 10.1093/ije/dyt192
  17. An SJ, Jung UJ, Choi MS, Chae CK, Oh GT, Park YB (2013) Functions of monocyte chemotactic protein-3 in transgenic mice fed a high-fat, high-cholesterol diet. J Microbiol Biotechnol 23: 405-413. doi: 10.4014/jmb.1210.10057
  18. Koo HJ, Kang SC, Jang SA, Kwon JE, Sohn E, Sohn EH (2014) Effects of protocatechuic acid derived from Rubus coreanus on the lipid metabolism in high cholesterol diet-induced mice. Korean J Plant Res 27: 271-278. doi: 10.7732/kjpr.2014.27.4.271
  19. Kim JY, Shin M, Heo YR (2014) Effects of stabilized rice bran on obesity and antioxidative enzyme activity in high fat diet-induced obese C57BL/6 mice. Korean Soc Food Sci Nutr 43: 1148-1157. doi: 10.3746/jkfn.2014.43.8.1148
  20. Su T, Huang C, Yang C, Jiang T, Su J, Chen M, Fatima S, Gong R, Hu X, Bian Z, Liu Z, Kwan HY (2020) Apigenin inhibits STAT3/CD36 signaling axis and reduces visceral obesity. Pharmacol Res152: 104586. doi: 10.1016/j.phrs.2019.104586
  21. Park SH, Kim GY (2010) Blood glucose level, insulin content and biochemical variables of complexcity extract from oriental medicinal plants on diabetes rats. Korean J Food Nutr 23: 258-268
  22. Bjornsson HK, Bjornsson ES, Avula B, Khan IA, Jonasson JG, Ghabril M, Hayashi PH, Navarro V (2020) Ashwagandha-induced liver injury: A case series from Iceland and the US drug-induced liver injury network. Liver Int 40: 825-829. doi: 10.1111/liv.14393
  23. Lee JJ, Shin HD, Lee YM, Kim AR, Lee MY (2009) Effect of broccoli sprouts on cholesterol-lowering and anti-obesity effects in rats fed high fat diet. J Korean Soc Food Sci Nutr 38: 309-318. doi: 10.3746/jkfn.2009.38.3.309
  24. Giannini EG, Testa R, Savarino V (2005) Liver enzyme alteration: a guide for clinicians. CMAJ 172: 367-379. doi: 10.1503/cmaj.1040752
  25. Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121: 2094-2101. doi: 10.1172/JCI45887
  26. Azain MJ, Hausman DB, Sisk MB, Flatt WP, Jewell DE (2000) Dietary conjugated linoleic acid reduces rat adipose tissue cell size rather than cell number. J Nutr 130: 1548-1554. doi: 10.1093/jn/130.6.1548